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Preface

The authors of this book had several decades of research in different areas of game
theory until themid-1990s,when theymet in a conference inOdense,Denmark. Since
then they work together on oligopolies and different dynamic economic systems and
meet at least once every year in Tokyo and either in Tucson, Arizona or in Budapest
and Pécs, Hungary.

This book has two origins. First, it is based on game theory short courses presented
in several countries including Japan, Hungary, China, and Taiwan among others. The
second author introduced and taught for several years a one-semester graduate-level
game theory course at the Eötvös University of Sciences and at the University of
Arizona for students in engineering and management. The class notes of that course
is the second origin of this book. The objective of this book is to introduce the readers
into the main concepts, methods, and applications of game theory, the subject, which
has continuously increasing importance in applications in many fields of quantitative
sciences including economics, social science, engineering, biology, etc. The wide
variety of applications are illustrated with the particular examples introduced in the
second and third chapters as well as with the case studies of the last chapters.

After the first edition of this book was published, the authors continued their
joint research and teaching game theory that resulted in ideas of new interesting
applications, examples, and some additional theoretical issues. They are added into
this second edition.

We strongly recommend this book to undergraduate and graduate students,
researchers and practitioners in all fields of quantitative science where decision prob-
lems might arise involving more than one decision makers, stakeholders, or interest
groups. As we will see later in the different chapters, the most appropriate solution
concept and the corresponding solution methodology for any problem is a function
of the behavior of the decision makers and their interrelationships, and the available
information. So before applying any method from this book, these conditions have
to be examined. Then the most appropriate method has to be selected and applied to
get the solution, which has to be then interpreted and applied in practice.

We sincerely hope that this book will help the readers to understand the main
concepts and methodology of game theory, it will help to select the most appropriate
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model, solution concept, and method, and to use the obtained result in applying it in
their practical problems.

The authors are thankful to the Department of Economics of Chuo Univer-
sity, Tokyo, as well as the Mathematics Department of the Corvinus University of
Budapest for their hospitality during the joint works of the authors. The support of
the Applied Mathematics Department of the University of Pécs, Hungary, is also
appreciated.

In addition, the authors wish to express their special thanks to Dr. Mark Molnar
at ELTE GTK, Budapest, for the assistance in preparing the manuscript and the final
edited version of this book.

Kawasaki, Japan
Budapest, Hungary

Akio Matsumoto
Ferenc Szidarovszky



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Part I Noncooperative Games

2 Discrete Static Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Examples of Two-Person Finite Games . . . . . . . . . . . . . . . . . . . . . . 7
2.2 General Description of Two-Person Finite Games . . . . . . . . . . . . . 16
2.3 N -Person Finite Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Continuous Static Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Examples of Two-Person Continuous Games . . . . . . . . . . . . . . . . . 26
3.2 Examples of N -Person Continuous Games . . . . . . . . . . . . . . . . . . . 48

4 Relation to Other Mathematical Problems . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Nonlinear Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Fixed Point Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Existence of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 General Existence Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Bimatrix and Matrix Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Mixed Extensions of N-Person Finite Games . . . . . . . . . . . . . . . . . 69
5.4 Multiproduct Oligopolies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Computation of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1 Application of the Kuhn-Tucker Conditions . . . . . . . . . . . . . . . . . . 73
6.2 Reduction to an Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Solution of Bimatrix Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Solution of Matrix Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 Solution of Oligopolies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vii



viii Contents

7 Special Matrix Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.1 Matrix with Identical Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 The Case of Diagonal Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Symmetric Matrix Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Relation Between Matrix Games and Linear Programming . . . . . 93
7.5 Method of Fictitious Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.6 Method of Von Neumann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Uniqueness of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.1 Criteria Based on Best Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2 Criteria Based on Payoff Functions . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Repeated and Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.1 Leader-Follower Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.2 Dynamic Games with Simultaneous Moves . . . . . . . . . . . . . . . . . . 118
9.3 Dynamic Games with Sequential Moves . . . . . . . . . . . . . . . . . . . . . 123
9.4 Finite Tree Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9.5 Extensive-Forms of Dynamic Games . . . . . . . . . . . . . . . . . . . . . . . . 131
9.6 Subgames and Subgame-Perfect Nash Equilibria . . . . . . . . . . . . . . 134

10 Games Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.1 Static Bayesian Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.2 Dynamic Bayesian Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Part II Cooperative Games

11 Solutions Based on Characteristic Functions . . . . . . . . . . . . . . . . . . . . . 151
11.1 The Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
11.2 Stable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
11.3 The Nucleolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.4 The Shapley Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.5 The Kernel and the Bargaining Set . . . . . . . . . . . . . . . . . . . . . . . . . . 173

12 Partial Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
12.1 Partial Cooperation in Oligopolies . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12.2 Dependence on Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 186

13 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
13.1 The Nash Bargaining Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
13.2 Alternative Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.3 N -Person Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



Contents ix

14 Multiobjective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.1 Lexicographic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14.2 The ε-Constraint Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
14.3 The Weighting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
14.4 Distance-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
14.5 Direction-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.6 Pareto Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

15 Social Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.1 Methods with Symmetric Players . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15.2 Methods with Powers of Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

16 Case Studies and Applications of Static Games . . . . . . . . . . . . . . . . . . . 233
16.1 A Salesman’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
16.2 Oligopoly in Water Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
16.3 A Forestry Management Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
16.4 International Fishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
16.5 A Water Distribution Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

17 Case Studies and Applications of Repeated and Dynamic
Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
17.1 Oligopolies with Pollution Control . . . . . . . . . . . . . . . . . . . . . . . . . . 249
17.2 Competition of Two Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
17.3 Love Affair with Cautious Partners . . . . . . . . . . . . . . . . . . . . . . . . . 255
17.4 Control in Oligopolies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
17.5 Effect of Information Lag in Oligopoly . . . . . . . . . . . . . . . . . . . . . . 261

Appendix A: Vector and Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Appendix B: Convexity, Concavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Appendix C: Optimum Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Appendix D: Fixed Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Appendix E: Monotonic Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Appendix F: Duality in Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . 283

Appendix G: Multiobjective Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Appendix H: Stability and Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



List of Figures

Fig. 2.1 Equilibria in Example 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Fig. 2.2 Illustration of Example 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Fig. 2.3 Structure of the city . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Fig. 3.1 Best responses in Example 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Fig. 3.2 Best responses in Example 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Fig. 3.3 Best responses in Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Fig. 3.4 Best responses in Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Fig. 3.5 Best responses in Case 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Fig. 3.6 Best responses in Case 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Fig. 3.7 Payoff of Player 1 in Example 3.4 . . . . . . . . . . . . . . . . . . . . . . . . 34
Fig. 3.8 Payoff function of player 1 in Example 3.5 . . . . . . . . . . . . . . . . . 35
Fig. 3.9 Illustration of R1(t2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fig. 3.10 Best responses in Example 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Fig. 3.11 Payoff function of player 1 in Example 3.6 . . . . . . . . . . . . . . . . . 37
Fig. 3.12 Best responses in Example 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Fig. 3.13 Payoff of player 1 in Example 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . 38
Fig. 3.14 Best responses in Example 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Fig. 3.15 Payoff φ1 in Example 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Fig. 3.16 Best responses in Example 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Fig. 3.17 Payoff φ1 in Example 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Fig. 3.18 Best responses in Example 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Fig. 3.19 Best responses in Example 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Fig. 3.20 Payoff φ1 in Example 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Fig. 3.21 Payoff φ2 in Example 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Fig. 3.22 Best responses in Example 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Fig. 3.23 Payoff φ1 in Example 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Fig. 3.24 Payoff φ2 in Example 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Fig. 3.25 Best responses in Example 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Fig. 5.1 Payoff functions of Example 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Fig. 5.2 Best responses in Example 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Fig. 5.3 Best responses in Example 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



xii List of Figures

Fig. 5.4 Best responses in Example 5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Fig. 6.1 Best responses in Example 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Fig. 6.2 Feasible sets in problems (6.15) . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Fig. 6.3 Price function in Example 6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Fig. 8.1 Best responses in Example 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Fig. 9.1 Illustration of the bargaining set in Example 9.6 . . . . . . . . . . . . . 124
Fig. 9.2 A finite tree game with three players . . . . . . . . . . . . . . . . . . . . . . . 129
Fig. 9.3 Illustration of the backward induction . . . . . . . . . . . . . . . . . . . . . . 130
Fig. 9.4 Game tree of Example 9.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Fig. 9.5 Extensive form of Example 9.11 . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Fig. 9.6 Modified graph of Example 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Fig. 9.7 Extensive form in the prisoner’s dilemma game . . . . . . . . . . . . . . 133
Fig. 10.1 Extensive form of the battle of sexes game . . . . . . . . . . . . . . . . . . 143
Fig. 10.2 Extensive form of a signaling game . . . . . . . . . . . . . . . . . . . . . . . . 146
Fig. 12.1 Best responses (12.15) and (12.16) . . . . . . . . . . . . . . . . . . . . . . . . 184
Fig. 13.1 Illustration of a conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Fig. 13.2 A simple geometric fact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Fig. 13.3 Steps of the proof of Theorem 13.1 . . . . . . . . . . . . . . . . . . . . . . . 194
Fig. 13.4 Illustration of Axiom 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Fig. 13.5 Other illustration of Axiom 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Fig. 13.6 Illustration of the Kalai-Smorodinsky solution . . . . . . . . . . . . . . 199
Fig. 13.7 Illustration of the area monotonic solution . . . . . . . . . . . . . . . . . . 200
Fig. 14.1 Decision space in Example 13.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Fig. 14.2 Payoff space in Example 13.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Fig. 14.3 Illustration of Example 14.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Fig. 14.4 Illustration of Example 13.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Fig. 14.5 Illustration of Example 14.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Fig. 14.6 Non-Pareto optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Fig. 15.1 Preference graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Fig. 15.2 Preference graph with weighted players . . . . . . . . . . . . . . . . . . . . 230
Fig. 15.3 Reduced preference graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Fig. 16.1 Different cases in equilibrium analysis . . . . . . . . . . . . . . . . . . . . . 237
Fig. 17.1 Graphs of u(x) and v(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Fig. B.1 Convex function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Fig. D.1 Illustration of Brouwer’s fixed point theorem . . . . . . . . . . . . . . . . 276
Fig. G.1 Weakly and strongly nondominated solutions . . . . . . . . . . . . . . . 286



List of Tables

Table 2.1 Payoff table of Example 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2.2 Payoff table of Example 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2.3 Payoff table of Example 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2.4 Payoff table of Example 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2.5 Payoff table of Example 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2.6 Payoff table of Example 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 2.7 Payoff table of Example 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 2.8 Payoff table of Example 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 2.9 Payoff tables of Example 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 2.10 Payoff table of Player 1 in Example 2.10 . . . . . . . . . . . . . . . . . 16
Table 2.11 Payoff tables of two-person finite games . . . . . . . . . . . . . . . . . 17
Table 2.12 Payoff table of Example 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 9.1 Payoff table of Example 9.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 9.2 Payoff matrix of game of Fig. 9.5 . . . . . . . . . . . . . . . . . . . . . . . 133
Table 10.1 Modified payoff matrix of Example 2.1 . . . . . . . . . . . . . . . . . . 137
Table 10.2 Payoff matrix of the Type II game . . . . . . . . . . . . . . . . . . . . . . . 137
Table 10.3 Occurance probability values . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 10.4 Payoff matrices of player 1 in Example 10.3 . . . . . . . . . . . . . . 138
Table 10.5 Final payoff matrix of player 1 in Example 10.3 . . . . . . . . . . . 139
Table 15.1 Data of Example 15.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 15.2 Reduced data set by eliminating alternative 1 . . . . . . . . . . . . . 225
Table 15.3 Second reduced table by eliminating alternative 4 . . . . . . . . . . 225
Table 15.4 Reduced data set by eliminating alternative 3 . . . . . . . . . . . . . 226
Table 15.5 Second reduced table by eliminating alternative 4 . . . . . . . . . . 226
Table 15.6 Reduced data set by eliminating alternative 4 . . . . . . . . . . . . . 226
Table 15.7 Second reduced table by eliminating alternative 1 . . . . . . . . . . 227
Table 15.8 Data of Example 15.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 15.9 Reduced table by eliminating alternative 1 . . . . . . . . . . . . . . . . 229
Table 15.10 Second reduced table by eliminating alternative 4 . . . . . . . . . . 229
Table 16.1 Payoff matrix of player 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Table 16.2 Rankings of the alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

xiii



xiv List of Tables

Table 16.3 Reduced table for Hare system . . . . . . . . . . . . . . . . . . . . . . . . . 239
Table 16.4 Further reduced table for Hare system . . . . . . . . . . . . . . . . . . . 240
Table 16.5 Reduced table in pair-wise comparisons . . . . . . . . . . . . . . . . . . 240
Table 16.6 Model data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Table 16.7 Nash-equilibrium results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Table 16.8 Weighting method results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247



Chapter 1
Introduction

In our private life and also in our professional life we have to make decisions repeat-
edly. Some decisions might have very small consequences and there are others, the
consequences of which might have significant effects in our life. As such examples
we can consider the choice of an item in our lunch and accepting or rejecting a job
offer. Decision science is dealing with all kinds of decision problems, concepts and
solution methodologies.

In formulating a mathematical model of a decision problem there are two conflict-
ing tendencies. In one hand we would like to include as many variables, constraints
and possible consequences as possible in order to get close to reality. However on the
other hand we would like to solve the models, so they must not be too complicated.
In creating a decision making model we have to identify the person or persons who
are in charge, that is, who is or are responsible to decide. There are two major pos-
sibilities: one or more decision makers are present. In order to decide in any choice,
the set of all possible decision alternatives have to be made clear to the decision
makers. If this set is finite or countable, then the decision problem is called discrete,
and if it is a connected set (like an interval), then the problem is considered to be
continuous. In the first case the alternatives are simply listed in an order, and in the
second case the alternatives are characterized by decision variables and the set of the
alternatives is defined by certain inequalities and equations containing the decision
variables. We usually make decisions to gain or avoid something. The goodness of
any decision can be measured by the different levels of attributes such as received
profit, economic loss, level of pollution, water supply, etc. We can usually attach a
utility value to each possible level of the attributes which represents the goodness of
that value. This function is sometimes called the value or the utility function attached
to the attribute. We usually assume that higher utility value is better for the decision
makers. In a decision making problem the decision makers might face with single
utility or with multiple utilities. In the optimization literature they are referred to
as single objective or multiple objective problems. Regarding the numbers of the
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decision makers and the objective functions we might divide the decision making
problems into several groups. In the presence of a single decision maker and a single
objective function we have an optimization problem the type of which depends on
the structure of the set of alternatives and the properties of the objective function.
Some of the most frequently applied optimum problems are linear, nonlinear, dis-
crete, mixed, dynamic and stochastic programming, and their solution methods are
well taylored to the nature of the problems in hand. If a single decisionmaker is faced
with more than one objectives, then the problem is modeled as a multiobjective opti-
mization problem. There are many different solution concepts and methods for their
solutions. Assume next that there are multiple decisionmakers. If their priorities, and
therefore their objectives are the same or almost the same, then a common objective
can be formulated, and the group of decision makers can be substituted with a single
decisionmaker instead of the group.We face a very different situation, when the deci-
sion makers have conflicting interests, each of them wants to get as high as possible
objective function value, however, the conflicts in their interests force them to reach
some agreement or mutually acceptable solution. The kind of solution to be obtained
largely depends on the available information and the attitude of the decision makers
toward each other. We have now arrived into the territory of game theory. As every
scientific discipline, game theory also has its own language. The decision makers are
called players, even if the decision problem is not a game and the decisionmakers are
not playing at all. The decision alternatives are called the strategies, and the objective
functions of the players are called the payoffs or payoff functions. Game theory can
be divided into two major groups. If there is no information sharing, negotiation or
mediation between the players, and they select strategies independently from each
other, then the game is noncooperative, otherwise cooperative. A new concept, the
idea of partial cooperation is getting more attention recently, which is between no
cooperation and total cooperation. The most simple situation occurs if each player
knows the set of feasible strategies and payoff functions of all players, in which
case we face a game with complete information. Otherwise the game is incomplete.
In the case of repeated or dynamic games with perfect information the players have
complete knowledge at each time period about the complete history of the game with
all previous strategy selections and payoff values. Games with imperfect information
occur if some of the above mentioned information is not available to the players. In
most cases the missing information is considered as a random variable and therefore
probabilistic methods are involved in the analysis. If the game is played only ones,
each player selects a strategy simultaneously with the others and they receive the
corresponding payoffs instantly, then the game is static. However in many cases the
game is repeated and the set of feasible strategies and payoff values of each time
period might depend on the previous strategy selections of the players, in which case
we face repeated or dynamic games. The overall strategy of each player consists of
his/her decisions at any time period and in any possible situation of the game at that
time period.

The aim of this book is to give an introduction to the theory of games and their
applications, so both researches and application oriented experts can benefit from it
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and can use thematerial of this book in theirwork. The solution concepts and the asso-
ciated methodology largely depend on the types of the game under consideration.
This book is structured accordingly. Part I of the book is devoted to noncoopera-
tive games. In Chap.2 we start with examples of static two-person discrete games
with complete information, and then some examples of their N-person extensions
are introduced. Continuous static games are discussed then in Chap.3 with examples
including the well-known Cournot oligopoly, and the first and second-price auctions.
In Chap.4 the relation of the Nash-equilibrum with fixed-point and optimization
problems is discussed, which can be used to guarantee the existence of equilibria
and to construct computer methods for finding equilibria. Existence results are pre-
sented in Chap.5, bimatrix and matrix games, mixed extensions of finite games, and
multiproduct oligopolies are selected as applications of the general results. Chapter 6
introduces the most common computer methods to find equilibria. They are based
on the solution of a certain system of (usually) nonlinear equations and inequali-
ties, or on the solution of a (usually) nonlinear programming problem. The general
methodology is illustrated with bimatrix and matrix games and single-product N-
firm oligopolies. Chapter7 is devoted to special matrix games and their relation to
linear programming. Two special methods for solving matrix games are introduced:
method of fictitious play as an iteration process, and the method of von Neumann
as a “interior point” method giving the equilibrium as the limit of the trajectories of
a nonlinear ordinary differential equation system. Chapter 8 gives conditions for the
uniqueness of equilibria based on conditions on the best response mappings as well
as on the strict diagonal convexity of the payoff functions. Chapter9 on dynamic
games starts with the most simple case of leader-follower games, where the concept
of backward induction is introduced. Dynamic games with simultenous moves are
illustrated with dynamic oligopolies, and games with sequential moves are discussed
using the case of oligopolies, bargaining, and finite rooted tree games. Games under
uncertainty are discussed in Chap.10, which is divided into two parts; static and
dynamic games. Part II of the book discusses the main issues of cooperative games.
Chapter11 introduces solution concepts based on characteristic functions including
the core, stable sets, the nucleolus, the Shapley values, the kernel and bargaing sets.
Chapter12 discusses games when the players partially cooperate with each other.
Chapter13 introduces the main concepts of conflict resolution. The symmetric and
nonsymmetric Nash bargaining solutions are introduced and some alternative meth-
ods are outlined. The fundamentals of multiobjective optimization are discussed in
Chap.14, which methods are important if a mediator is hired to find solution for the
dispute among the players. If no quantifiable payoff functions are available and the
players only can rank the alternatives, then social choice procedures are the most
appropriate methods, which are introduced in Chap.15. In the previous chapters we
already introduced particular games arising in several areas and showed their solu-
tions. In the last two chapters some additional case studies are discussed showing the
broad applicability of the material discussed in this book. In the Appendices some
mathematical background materials are briefly discussed which are repeatedly used
in the book.



Chapter 2
Discrete Static Games

In an optimization problem we have a single decision maker, his feasible decision
alternative set and an objective function depending on the selected alternative. In
game theoretical models we have several decision makers who are called the play-
ers, each of them has a feasible alternative set, which is called the player’s strategy
set, and each player has an objective function what is called the player’s payoff
function. The payoff of each player depends on the strategy selections of all play-
ers, so the outcome depends on his own decision as well as on the decisions of
the other players. Let N be the number of players, Sk the strategy set of player
k(k = 1, 2, . . . , N ) and it is assumed that the payoff functionφk of player k is defined
on S1 × S2 × · · · × SN and is real valued. That is, φk : S1 × S2 × · · · × SN �→ R. So
if s1, s2, . . . , sN are the strategy selections of the players, sk ∈ Sk(k = 1, 2, . . . , N ),
then the payoff of player k is φk(s1, s2, . . . , sN ). The game can be denoted as
�(N ; S1, S2, . . . , SN ;φ1, φ2, . . . , φN ) which is usually called the normal form rep-
resentation of the game.

A game is called discrete, if the strategy sets are countable, in most cases only
finite. Themost simple discrete game has only two players, each of them has only two
possible strategies to select from. Therefore there are only four possible outcomes
of the game.

2.1 Examples of Two-Person Finite Games

We start with the prisoner’s dilemma game, which is the starting example in almost
all game theory books and courses.

Example 2.1 (Prisoner’s dilemma) Assume two criminals robbed a jewellery store
for hire. After doing this job they escaped with a stolen can and delivered the stolen
items to amafia bosswho hired them.After getting rid of the clear evidence the police
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Table 2.1 Payoff table of
Example 2.1 �

�1
2

C D

C (−2,−2) (−10,−1)

D (−1,−10) (−5,−5)

stopped them for a traffic violation and arrested them for using a stolen car. However
the police had a very strong suspicion that they robbed the jewellery store because
themethod they used was already known to the authorities, but there was no evidence
for the serious crime, only for the minor offense of using a stolen car. In order to have
evidence, the two prisoners were placed to separate cells from each other, so they
could not communicate, and investigators told to each of them that his partner already
admitted the robbery and encouraged him to do the same for a lighter sentence. In
this situation the two criminals are the players, each of them has the choice from two
alternatives: cooperate (C) with his partner by not confessing or defect (D) from his
partner by confessing. So we have four possible states, (C,C), (C, D), (D,C) and
(D, D)where the first (second) symbol shows the strategy of the first (second) player.
The payoff values are the lengths of the prison sentences given to the two players.
They are given in Table2.1, where the first number is the payoff value of player 1
and the second number is that of player 2. The rows correspond to the strategies of
player 1 and the columns to the strategies of player 2.

If both players cooperate, then they get only a light sentence because the police
has no evidence for the robbery. If only one player defects, then he gets a very light
sentence as the exchange for his testimony against his partner, who will receive a
very harsh punishment. If both players confess, then they get stronger punishment
then in the case of (C,C) but lighter than the cooperating player in the case when
his partner defects.

In this situation the players can think in several different ways. They can look
for a stable outcome or they can try to get as good as possible outcome under this
condition.

The state (C,C) is not stable, since it is the interest of the first player to change
his strategy from C to D, when his 2-years sentence would decrease to only 1 year.
By this change the second player would get a very harsh 10 years sentence. The
state (C, D) is not stable either, since if the first player would change his strategy to
D, then his sentence would decrease in the expense of the second player. The state
(D,C) is similar by interchanging the two players. The state (D, D) is stable in the
sense that none of the players has the incentive to change strategy, that is, if any of
the players changes strategy and the other player keeps his choice, then the strategy
change can result in the same or worse payoff values. So the state (D, D) is the only
stable state. It is usually called the Nash-equilibrium.

Definition 2.1 A Nash-equilibrium gives a strategy choice for all players such that
no player can increase his payoff by unilaterally changing strategy.
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Table 2.2 Payoff table of
Example 2.2 �

�1
2

H L

H (40, 40) (10, 50)

L (50, 10) (20, 20)

Anotherwayof leading to the same solution is basedon the notion ofbest response,
which is the best strategy selection of each player given the strategy selection(s) of
the other player(s). We can find the best response function of player 1 as follows. If
player 2 selects C , then the payoff of player 1 is either −2 or −1 depending on his
choice of C or D. Since −1 is more preferable than −2, player 1 selects D in this
case:

R1(C) = D.

Similarly, if player 2 selects D, then the payoff of player 1 is either −10 or −5,
and again −5 is better with the strategy choice of D,

R1(D) = D.

Wecan see that strategy D is the best response of player 1 regardless of the strategy
selection of the other player. Therefore D is called a dominant strategy, so it is the
players’ optimal choice. Player 2 thinks in the same way, so his optimal choice is
always D. So the players select the state (D, D). �

Example 2.2 (Competition of gas stations) Two gas stations compete in an inter-
section of a city. They are the players, and for the sake of simplicity assume that they
can select only low (L) or high (H) selling price.

The payoff values are given in Table2.2. If both charge high price, then they share
the market and both enjoy high profit. If only one charges high price, then almost
all customers select the station with low price, so its profit will be high by the high
volume, while the other station will get only small profit by the very low volume.
If both select low price, then they share the market with low profits. By using the
same argument as in the previous example we can see that the only stable state is
(L , L), and L is dominant strategy for both players. The state (L , L) provides 20
units profit to each player. Notice that by cooperating with both selecting high price
their profits would be 40 units. However without cooperation such case cannot occur
because of the usual lack of trust between the players. The same comment can be
made in Example 2.1. as well, however, the illegality of price fixing also prohibits
the players to cooperate. �
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Example 2.3 (Game of privilege) Consider a housewith two apartments and several
common areas, such as laundry, storage, stairs etc. The two families are supposed to
take turns in cleaning and maintaining these common areas. In this situation the two
families are the players, their possible strategies are participating (P) in the joint
effort or not (N ). The payoff table is given in Table2.3. If both families participate,
then the common areas are always nice and clean resulting in the highest payoff for
both players. If only one participates, then the common areas are not as clean as in
the previous case, and payoff of the participating player is even less than that of the
other player because of its efforts.

Table 2.3 Payoff table of
Example 2.3 �

�1
2

P N

P (3, 3) (1, 2)

N (2, 1) (0, 0)

If none of the players participate, then the common areas are not taken care
resulting in the least payoffs. The best responses of the first player are as follows:

R1(P) = P and P1(N ) = P.

That is, P is dominant strategy. The same holds for player 2 as well, so the only
Nash equilibrium is (P, P). �

Example 2.4 (Chicken game) Consider a very narrow street in which two teenagers
stand against each other on motorbikes. For a signal they start driving toward each
other. The one who gives way to the other is called the chicken. In this situation the
teenagers want to show to their friends or to a gang that how determined they are.
They are the two players with two possible strategies: becoming a chicken (C) or
not (N ). Table2.4 shows the payoff values.

If both players are chickens, then their payoffs are higher than the payoff of a
single chicken and lower than a non-chicken when the other player is a chicken. The
worst possible outcome occurs with the state (N , N ), when they collide and might
suffer serious injuries. The best responses are the followings:

Rk(C) = N and Rk(N ) = C (k = 1, 2).

Therefore both states (C, N ) and (N ,C) are Nash equilibria, since in both cases
the strategy choice of each player is its best response against the corresponding
strategy of the other player. This result however does not help the players in their
choices in a particular situation, since both strategies are equilibirium strategies and
a choice among them requires the knowledge of the selected strategy of the other
player. �
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Table 2.4 Payoff table of
Example 2.4 �

�1
2

C N

C (3, 3) (2, 4)

N (4, 2) (1, 1)

Example 2.5 (Battle of sexes) A husband (H) and wife (W ) want to spend an
evening together. There are two possibilities, either they can go to a football game
(F) or to a movie (M). The husband would prefer F , while the wife would like to
go to M . They do not decide on the common choice in the morning and plan to call
each other in the afternoon to finalize the evening program. However they cannot
communicate for some reason (unexpected meeting in work or power shortage), so
each of them selects F or M independently of the other, travels there hoping to meet
his/her spouse. The payoff values are given in Table2.5.

Table 2.5 Payoff table of
Example 2.5 ����H

W
F M

F (2, 1) (0, 0)

M (0, 0) (1, 2)

If both players go to F , then they spend the evening together with positive payoff
values, and since F is the preferred choice of the husband, his payoff is higher than
that of his wife. The state (M, M) is similar in which case the wife gets a bit higher
payoff. In the cases of (F, M) and (M, F) they cannot meet, no joint event occurs
with zero payoff values. Clearly for both players k = H,W,

Rk(F) = F and Rk(M) = M

so both states (F, F) and (M, M) are equilibria. Similarly to the previous example
this solution does not give a clear choice in particular situations. �

Example 2.6 (Good citizens) Assume a robbery takes place in a dark alley and
there are two witnesses of this crime. Both of them have a mobile phone, so they
have the choice of either calling the police (C) or not (N ). If at least one of them
makes the call, then the criminal is arrested resulting in a positive payoff to the society
including both witnesses. However the caller will be used to testify in the trial against
the criminal, which takes time and possible revenge from the criminal’s partners. So
the possible strategies of the witnesses are C and N , and the corresponding payoff
values are given in Table2.6.
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Table 2.6 Payoff table of
Example 2.6 �

�1
2

C N

C (7, 7) (7, 10)

N (10, 7) (0, 0)

The arrest of the criminal gives a 10 units benefit, however making the call to the
police decreases it by 3 units. If no phone call is made, then no benefit is obtained
without any cost. In this case

Rk(C) = N and Rk(N ) = C (k = 1, 2)

resulting in two equilibria (C, N ) and (N ,C). �

The previous examples show that equilibrium can be unique or multiple. In the
following example we will show case when no equilibrium exists.

Example 2.7 (Checking tax return) A tax payer (T ) has to pay an income tax of
5,000 dollars, however he has the option of not declaring his income and to avoid
paying tax. However in this second case he might get into trouble if IRS checks his
tax return. In formulating this situation as a two-person game, player 1 is the taxpayer
with two possible strategies: cheating (C) or being honest (H) with the tax return;
and player 2 is the IRS who can check (C) the tax return or not (N ). In determining
the payoff values we notice that in the case of cheating the taxpayer has to pay his
entire income tax of $5, 000 and a penalty $5, 000 as well if his tax return is checked.
In checking a tax return the IRS has a cost of $1,000. Table2.7 shows the payoff
values of the two players.

Table 2.7 Payoff table of
Example 2.7 ����T

I RS
C N

C (−10, 9) (0, 0)

H (−5, 4) (−5, 5)

The best responses of the two players are as follows:

RT (C) = H and RT (N ) = C,

RI RS(C) = C and RI RS(H) = N .

We can easily verify, that there is no equilibrium, that is, no state is stable in
the sense that in the cases of all states at least one player can increase its payoff by
changing strategy.
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In the case of state (C,C) player 1 has the incentive to change its strategy to H .
In the case of (C, N ) player 2 can increase its payoff by changing strategy to C . In
the case of state (H,C) player 2 has again the incentive to change strategy to N , and
finally, in the case of state (H, N ) player 1 would want to change to C . �

Example 2.8 (Waste management) A waste management company plans to place
dangerous waste on the border between two counties causing damages D1 and D2

units to them. In order to avoid these damages at least one county has to support
intensive lobbying against the waste management company, which would cost them
C1 and C2 units, respectively. Both counties have two possible strategies: supporting
(S) the lobbying or not (N ). So we have four possible states with payoff values given
in Table2.8.

Table 2.8 Payoff table of
Example 2.8 �

�1
2

S N

S (−C1,−C2) (−C1, 0)

N (0,−C2) (−D1,−D2)

If both support lobbying, then both counties face costs but there is no damage. If
only one of them is supporter, then neither county faces damage but only one of them
pays for lobbying. If none of them is supporter, then both face damages without any
cost.

We can easily check the conditions under which the different states provide equi-
librium. State (S, S) is an equilibrium, if S is best response of both players against the
strategy choice of S of the other player, which occurs when −C1 � 0 and −C2 � 0.
This is impossible, so (S, S) cannot be an equilibrium. State (N , S) is an equilibrium
if 0 � −C1 and −C2 � −D2, which can be rewritten as C2 � D2. State (S, N ) is
an equilibrium if −C1 � −D1 and 0 � −C2, that is, when C1 � D1. And finally,
(N , N ) is an equilibrium if −D1 � −C1, and −D2 � −C2, which can be rewritten
as D1 � C1 and D2 � C2. Figure2.1. shows these cases. Clearly there is always an
equilibrium, and it is not unique if C1 � D1 and C2 � D2. �

Fig. 2.1 Equilibria in Example 2.8
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Example 2.9 (Advertisement game) Considermmarkets of potential customers and
assume that each of two agencies plans an intensive advertisement campaign on one
of the markets. So they select a market and perform intensive advertisement there.
If only one agency advertises on a market, then it will get all customers, however,
if they select the same market, then they have to share the customers. So the set
of strategies of both agencies is {1, 2, . . . ,m}. Let a1 � a2 � · · · � am denote the
number of potential customers in the different markets. The payoff values φ1 and φ2

of the two agencies are given in Table2.9, where qk = 1 − pk for k = 1, 2, . . . ,m.
A strategy pair (i, j) is an equilibrium if strategy i is the best response of player 1 if
player 2 selects strategy j , and also strategy j is best response of player 2 if player
1 choses strategy i . That is, the φ1(i, j) payoff value in the φ1 table is largest in its
column, and φ2(i, j) is largest in its row in the φ2 table. Notice first that in the φ1 table
the elements of the first row and the value at (2, 1) can be largest in their colums,
so only these elements can provide equilibrium. In the φ2 table only the first column
and element φ2(1, 2) can be largest in their rows. There are only three strategy pairs
satisfying both row and column maximum conditions,

(2, 1), (1, 1) and (1, 2).

The state (2, 1) is equilibrium, if a2 � p1a1 ; the state (1, 1) is equilibrium if
p1a1 � a2 and q1a1 � a2, and similarly (1, 2) is an equilibrium if a2 � q1a1. �

Table 2.9 Payoff tables of Example 2.9

�
�1
2

1 2 . . . m

1 p1a1 a1 . . . a1
2 a2 p2a2 . . . a1
.
.
.

.

.

.
.
.
.

.

.

.

m am am . . . pmam

φ1

�
�1
2

1 2 . . . m

1 q1a1 a2 . . . am
2 a1 q2a2 . . . am
.
.
.

.

.

.
.
.
.

m a1 a2 . . . qmam

φ2

Example 2.10 (A game with coins) Each of two boys has 1 coin in his hand. At the
beginning each of them places 0 or 1 coin into his pocket. First, player 1 guesses the
total number of coins under the condition that no bluffing is allowed, that means that
0 cannot be said if this player has a coin in his pocket, and 2 cannot be said if there
is no coin in his pocket. Then player 2 makes a guess without bluffing and under
the additional condition that the guessing of player 1 cannot be repeated. The player
with the correct guessing wins and will receive a 1 dollar reward. The loosing player
has to pay this reward.
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This is a two person zero-sum game (n =2). The strategy of any player has two
components: number of coins placed into his pocket (0 or 1) and guessing of the
total number of coins (0, 1 or 2). The process of the game with payoffs is illustrated
in Fig. 2.1, where it is assumed that Player 1 places 0 or 1 coin into his pocket,
and then Player 2 does the same. This is equivalent with the case when they do it
simultaneously.

The game starts at point I, where Player 1 can decide the number of coins placed
into his pocket (0 or 1) represented by the two arcs originated at this point. The two
outcomes are denoted by A1 and A2, where Player 2 has similar decisions, 0 or 1
again, which are represented by two arcs originated at points A1 and A2. The four
endpoints are B1, B2 , B3 and B4 at which points player 1 has to guess the total
number of coins without bluffing. Since he does not have any coin in his pocket at
ponts B1 and B2 guessing 2 is impossible. Similarly at points B3, B4 one coin is in
the pocket, so a zero guess is impossible. These impossible guesses are crossed out
in the figure. Since at each point B1, B2, B3 or B4 only two feasible guesses remain,
two arcs originate from these nodes. Their endpoints are C1–C8, where Player 2 gives
his guessing .

At point C1 guessing 0 would repeat the guessing of Player 1 and guessing 2 is
also impossible since there is no coin in his pocket. Therefore only one possibility
remains, so at point C1 Player 2 does not have any choice, his guess has to be 1. At
point C2, guessing 1 would repeat Player 1 and since there is no coin in his pocket,
guessing 2 is also impossible, showing that guessing 0 is the only choice. At point
C3, 0 would repeat Player 1, and since his guessing is 0 and bluffing is impossible,
Player 1 must have no coin in his pocket. Therefore only one possibility remains, so
at point C3 Player 2 must select 1.

Fig. 2.2 Illustration of Example 2.10
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Very similar reasons show that at all points C4, C5, C6, C7, C8, the situation is
similar, only one feasible choice is possible for Player 2.

The payoff values are shown under the terminal points. For example under C1 the
total number of coins is 0 + 0 = 0, which is the guess of Player 1, who is therefore
the winner.

The above discussion shows that the guessing of Player 2 is predetermined by the
numbers of coins in the pockets and the guess of Player 1, therefore Player 2 has
only one component in strategy: 0 or 1. Player 1 has two componenets, each strategy
can be given as (k, l) where k is the number of coins in his pocket and l represents
his guessing.

This game is zero-sum, it is sufficient to give payoffs of Player 1 only in Table2.10.
Equilibrium payoffs are those payoff values, which are largest in their columns

and smallest in their rows. The largest values in both columns are 1, and there is a
−1 next to them showing that they cannot be also smallest in their rows. Thus the
game has no equilibrium. �

Table 2.10 Payoff table of
Player 1 in Example 2.10 �

�1
2

(0) (1)

(0, 0) 1 −1

(0, 1) −1 1

(1, 1) 1 −1

(1, 2) −11 1

2.2 General Description of Two-Person Finite Games

Up to this point we have introduced two-person finite games, when the players had
only finitely many strategies to select from. Assume that player 1 has m strategies
and player 2 has n strategies. Then the strategy sets are S1 = {1, 2, . . . ,m} and
S2 = {1, 2, . . . , n} for the two players. As we did in the examples, the payoff values
can be shown in the payoff tables, the general forms of which are given in Table2.11.
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Table 2.11 Payoff tables of two-person finite games

�
�1
2

1 2 . . . n

1 a11 a12 . . . a1n
2 a21 a22 . . . a2n
.
.
.

.

.

.
.
.
.

.

.

.

m am1 am2 . . . amn

φ1

�
�1
2

1 2 . . . n

1 b11 b12 . . . b1n
2 b21 b22 . . . b2n
.
.
.

.

.

.
.
.
.

.

.

.

m bm1 bm2 . . . bmn

φ2

A strategy pair (or state) (i, j) is an equilibrium, if the element ai j is largest in its
column in the φ1 table, and the element bi j is largest in its row in the φ2 table. As it
was illustrated in the previous examples there is no guarantee for the existence of an
equilibrium, and even if it exists the uniqueness of the equilibrium is not guaranteed
either.

A two-person game is called zero-sum if φ1(i, j) + φ2(i, j) = 0 with all strategy
pairs (i, j). That is, the gain of a player is the loss of the other. In this case bi j = −ai j ,
so there is no need to give the table for φ2, since its elements are the negatives of
the corresponding elements of φ1. A strategy pair (i, j) is an equilibrium, if ai j is
the largest among the elements a1 j , a2 j , . . . , amj and −ai j is the largest among the
elements −ai1,−ai2, . . . ,−ain . The second condition can be rewritten as ai j is the
smallest among the numbers ai1, ai2, . . . , ain . That is, ai j is the largest in its column
and also smallest in its row. The equilibria of zero sum games are often called the
saddle points (think of a person sitting on a horse who is observed from the side
and from the back of the horse). In general, zero-sum, two-person games do not
necessarily have equilibrium, and if equilibrium exists, it is not necessarily unique.
However we can easily show that in the case of multiple equilibria the strategies are
different but the corresponding payoff values are identical.

Lemma 2.1 Let (i, j) and (k, l) be two equilibria of a two-person zero-sum game.
Then φ1(i, j) = φ1(k, l).

Proof Let φ1(i, j) = ai j and φ1(k, l) = akl . Then
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ai j � akj � akl

since ai j is largest in its column and akl is smallest in its row. Similarly

ai j � ail � akl

since ai j is smallest in its row and akl is largest in its column. These relations imply
that ai j = akl . �

It is an interesting problem to find out the proportion of two-person zero-sumfinite
games which have at least one equilibrium. As the following theorem shows this ratio
is getting smaller by increasing the size of the payoff table. Consider a two-person,
zero-sum game in which the players have m and n strategies, respectively. Assume
that the payoff values ai j are independent, identically distributed random variables
with a continuous cumulative distribution function. Then the following fact can be
proved.

Theorem 2.1 Under the above conditions the probability that the game has an
equilibrium is

Pm,n = m!n!
(m + n − 1)! .

Proof Notice first that

(i) the elements of the payoff table are different with probability one;
(ii) all elements ai j have the same probability to be equilibrium;
(iii) the probability that there is an equilibrium is mn times the probability that a11

is equilibrium.

Fact (i) follows from the assumption that the distribution function is continuous and
the table elements are independent, (ii) is implied by the assumption that the table
elements are identically distributed. From (i), the probability that multiple equilibria
exists is zero.

The element a11 is equilibrium if it is the largest in its column and the smallest in
its row. So if we list the elements of the first row and column in increasing order, then
all other elements of the first column should be before a11 and all other elements of
the first row have to be after a11. The (m − 1) other elements of the first column can
be permutted in (m − 1)! different ways and the (n − 1) other elements of the first
row can be permutted in (n − 1)! different ways, therefore there are (m − 1)!(n − 1)!
possible permutations inwhicha11 is in the equilibriumposition. Since them + n − 1
elements of the first row and column have altogether (m + n − 1)! permutations, the
probability that the element a11 is an equilibrium equals

(m − 1)!(n − 1)!
(m + n − 1)! .

Hence the probability that equilibrium exists is
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mn
(m − 1)!(n − 1)!

(m + n − 1)! = m!n!
(m + n − 1)! .

�

Notice that the value of Pmn does not depend on the distribution type of the
elements, it depends on only the size of the payoff table.

In order to gain a feeling about this value let’s consider some special cases and
relations:

P2,2 = 2!2!
3! = 2

3

P2,3 = 2!3!
4! = 1

2

P2,4 = 2!4!
5! = 2

5
,

from which we see that the probability value decreases if the size of the table
becomes larger. This is true in general, since

Pm,n+1

Pm,n
= m!(n + 1)!

(m + n)! · (m + n − 1)!
m!n! = n + 1

m + n
< 1.

The same result is obtained if m increases, since Pm,n = Pn,m . Notice that

P2n = 2!n!
(2 + n − 1)! = 2

n + 1
→ 0

as n → ∞, therefore with any m ≥ 2,

Pmn ≤ P2n → 0

as n → ∞. Therefore Pmn is decreasing inm and n, furthermore it converges to zero
if either m or n tends to infinity.

We can also show that the theorem does not hold necessarily if the distribution of
table elements is discrete.

Example 2.11 Consider therefore the case of m = n = 2 and assume that the four
elements of the table are randomly generated from a Bernoulli distribution such that

P(ai j = 1) = p and P(ai j = 0) = q = 1 − p.

Since each element can take two possible values 0 and 1 furthermore there are
four elements, there are 16(= 24) possible payoff tables:
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(
0© 0
0 0

) (
1 0©
0 0

) (
0© 1
0 0

)(
0 0
1 0©

)(
0 0
0© 1

)
(

1© 1
0 0

) (
1 0©
1 0

) (
1 0
0 1

)(
0 1
1 0

)(
0© 1
0 1

) (
0 0
1 1©

)
(
1 1©
1 0

) (
1 0
1 1©

) (
0 1
1© 1

)(
1© 1
0 1

) (
1 1©
1 1

)
.

There are only two of them without an equilibrium. In the other tables an equi-
librium element is circled. The probability of each table

(
1 0
0 1

)
,

(
0 1
1 0

)

equals p2q2, so the probability that no equilibrium exists is 2p2q2, and the probability
that there is at least one equilibrium is 1 − 2p2q2, which is not necessarily equal to
2
3 . �

As an example of two-person zero-sum finite games consider the following situ-
ation.

Example 2.12 (Anti-terrorism game) A rectangular shaped city is divided into m
block-rows and n block-columns by E − W and S − N streets as shown in Fig. 2.2.
So there are mn blocks, and their values are listed in the figure (Fig. 2.3).

Fig. 2.3 Structure of the city

Assume now that a terrorist group placed a bomb in one of the city blocks and
demands a large amount of money as well as the release of prisoners from jail. The
city administration clearly does not want to negotiate, they try to find the bomb and
avoid damages. However they have sufficient resources to check only one complete
block-row or a complete block-column, so if the bomb is placed there, then it is
certainly found. In this situation the city and the terrorist group are the two players.
The city can chose the block row or the block column which will be checked, the
terrorists can select any block of the city. The payoff of the city is positive when
they can find the bomb and save that block. The corresponding payoff of the terrorist
group is the negative of that of the city, since they lose the damage opportunity.
Table2.12 shows the payoff table of the city.
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Table 2.12 Payoff table of Example 2.12

����1
2

(1, 1) (1, 2) . . . (1, n) (2, 1) (2, 2) . . . (2, n) . . . (m, 1) (m, 2) . . . (m, n)

1 a11 a12 . . . a1n

2 a21 a22 . . . a2n
.
.
.

m am1 am2 . . . amn

1 a11 a21 am1

2 a12 a22 am2

.

.

.
. . .

. . .
. . .

n a1n a2n amn

If the city checks block-row i , then the bomb is found if it is placed in one of the
blocks (i, 1), (i, 2), . . . , (i, n) and if the city checks block-column j , then the bomb
is found if it is in one of the blocks (1, j), (2, j), . . . , (m, j). This is a zero-sum
game, so an element of the table provides equilibrium if it is the largest in its column
and smallest in its row. Every column has positive element, so the largest element
is always positive. Every row has zero elements, so the smallest element is always
zero. Therefore there is no element in the table which satisfies both conditions of an
equilibrium. Consequently the game has no equilibrium. �

2.3 N-Person Finite Games

Let N denote the number of players and assume that the players have finitely many
strategies to select from. Assume that player k(1 � k � N ) has mk strategies which
can be denoted by 1, 2, . . . ,mk . So the set of strategies of player k is the finite set
Sk = {1, 2, . . . ,mk}. If player 1 selects strategy i1, player 2 selects i2, and so on,
player N selects iN , then the N -tuple s = (i1, i2, . . . , iN ) is called a simultaneous
strategy of the players. So s ∈ S1 × S2 × · · · × SN , and the payoff function of each
player k is a real valued function defined on S = S1 × S2 × · · · × SN which can
be denoted by φk(s). Similarly to the two-player case a simultaneous strategy s∗ =
(i∗1 , i∗2 , . . . , i∗N ) ∈ S is an equilibrium, if i∗k is the best response of all players k with
given strategies i∗1 , . . . , i∗k−1, i

∗
k+1, . . . , i

∗
N of the other players.
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Example 2.13 (Selecting a number) There are n ≥4 students in a classroom. The
professor gives the following assignment to the students. Independently of each other
they have to select one number from the set {0, 1, 2,…, m}. So this is an n-person
game, the strategy set of each player is the set {0, 1, 2,…, m}. The common payoff
of the students is determined by the professor: if the students select the same number
then each of them receives 1 dollar, otherwise no reward will be given to anyone.

We can prove that all selections are equilibria, except when n-1 students select
the same number and one student selects a different number.

It is easy to see that this is not an equilibrium, since if the student with a different
number changes his/her strategy to the choice of the others, then everybody’s payoff
will increase.

If the students select the same number, then their payoff will decrease if any one
of the students changes choice to something else.

If at most n-2 students have identical choice, then we have again an equilibrium:
if a student changes strategy, then it is still impossible that all students would have
identical choices. So the students will remain loosers, no increase in payoff would
occur. �

Example 2.14 (Voting game) Consider a city with two candidates for an office, like
to become the mayor. Let A and B denote the candidates. The potential voters are
divided between the candidates. If N denotes the number of voter eligible individuals,
then we can define an N -person game in the following way. The potential voters are
the players. Each of them has two possible strategies voting or not. In defining the
payoff functions two factors have to be taken into consideration. For any voter the
benefit is 1 if his/her candidate is the winner, 0 in the case of a tie, and −1 if the
other candidate wins. However voting has some cost (time, car usage, etc.), which is
assumed to be less than unity. In finding conditions for the existence of an equilibrium
we have to consider the following simple facts.
(i) There is no equilibrium when a candidate wins.
If at least one player votes in the losing group, then by not voting he/she would
increase payoff by eliminating voting cost. If nobody votes in the losing group, then
we have two subcases. If more than one person votes in the winning group, then one
of them could change strategy to not voting and would increase payoff. If only one
person is in the winning group, then any person in the losing group could make the
election result a tie by going to vote, and in this way increase payoff.
(ii) So the election result has to be a tie in any equilibrium, and everybody has to
vote.
Assume that there is a person who dose not vote. By going to vote he/she could make
his/her group winner and so the payoff would increase.

In summary, the only possibility for an equilibrium is if N is even, equal number of
people support the two candidates and everybody votes. This is really an equilibrium,
since if any player changes strategy by not voting, then his/her group becomes the
losing group and the payoffs decrease for its members. �
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If at least one player has infinitely many strategies, then the payoff matrices
become infinite. Nash equilibria are defined in the same way as in finite games,
however the existence of best responses is not guaranteed in general.



Chapter 3
Continuous Static Games

Let N denote the number of players. It is usually assumed that the set of all feasible
strategies of each player has at least two elements. If Sk is the strategy set of player k,
then its payoff function φk is defined on the set of all simultaneous strategies, which
is denoted by S = S1 × S2 × · · · × SN , and φk(s) for all s ∈ S is a real number. The
normal formof the game is given asG = {N ; S1, S2, . . . , SN ;φ1, . . . , φN }. The game
is continuous, if all sets Sk are connected and all payoff functions φk are piece-wise
continuous.

The best responses of the players and the Nash-equilibrium can be defined in the
same way as they were introduced for discrete games. The best response function of
any player k is the following:

Rk(s−k) = {s∗
k |s∗

k ∈ Sk, φk(s
∗
k , s−k) = max

sk∈Sk
φk(sk, s−k)} (3.1)

which is the set of all strategies s∗
k of player k such that his payoff is maximal given

the strategy selections s−k = (s1, . . . , sk−1, sk+1, . . . , sN ) of the other players. The
Nash-equilibrium is a simultaneous strategy vector s∗ = (s∗

1 , . . . , s
∗
N ) such that the

equilibrium strategy s∗
k for all players are their best responses given the strategies

s∗
j of all other players j . This property can be reformulated as for all players k and

sk ∈ Sk ,

φk(s
∗
1 , ..., s

∗
k , ..., s

∗
N ) � φk(s

∗
1 , . . . , s

∗
k−1, sk, s

∗
k+1, . . . , s

∗
N )

meaning that no player can increase his payoff from the equilibrium by unilaterally
changing strategy.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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3.1 Examples of Two-Person Continuous Games

Example 3.1 (Sharing a pie) Themother of two children bakes a pie for her children
whowere asked to tell the amount they want to get from the pie under two conditions.
First, none of them can know the request of the other child before announcing his
request and second, if the total amount they request is more than the pie itself, then
they do not get any part of the pie. In this case the players are the two children,
their strategies are the real numbers x (for players 1) and y (for player 2) such that
x, y ∈ [0, 1]. The payoff functions are

φ1(x, y) =
{
x if x + y � 1

0 otherwise
(3.2)

and

φ2(x, y) =
{
y if x + y � 1

0 otherwise.
(3.3)

With given value of y ∈ [0, 1] the best response of player 1 is to ask the leftover
portion after player 2 gets his requested amount: R1(y) = 1 − y. If x < 1 − y, then
player 1 could increase his payoff by increasing his strategy to 1 − y, and if x >

1 − y, then his payoff is zero, so it could be increased by decreasing the value of
x to 1 − y. Similarly the best response of player 2 is R2(x) = 1 − x . The two best
response functions are illustrated in Fig. 3.1 from which it is clear that there are
infinitely many equilibria:

{(x∗, y∗)|x∗ ∈ [0, 1], y∗ = 1 − x∗}.

�

Fig. 3.1 Best responses in Example 3.1
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Example 3.2 (Airplane and submarine) This game is a simplified version of the
game between British airplanes and German submarines during World War 2 in the
British Channel. Assume a submarine is hiding at a certain point x of the unit interval
[0, 1] and an airplane drops a bomb into a location y of interval [0, 1]. The damage
to the submarine is the payoff of the airplane and its negative is the payoff of the
submarine. In this game the submarine is player 1 and the airplane is player 2 with
strategy sets S1 = S2 = [0, 1]. The payoff of player 1 is φ1(x, y) = −d(|x − y|) and
that of player 2 is φ2(x, y) = d(|x − y|), where d strictly decreases in |x − y|, that
is, the damage is increasing if the bomb is dropped closer to the submarine. With
given y ∈ [0, 1], the submarine wants to find the location which is as far as possible
from point y:

R1(y) =

⎧⎪⎨
⎪⎩
0 if y > 1

2

1 if y < 1
2

{0; 1} if y = 1
2

(3.4)

that is, there is a unique best response if y �= 1
2 and the two endpoints if y = 1

2 . The
best response of player 2 is the exact hit with the bomb if x is known:

R2(x) = x . (3.5)

The best responses are illustrated in Fig. 3.2 from which we can conclude that
there is no Nash-equilibrium. �

Fig. 3.2 Best responses in Example 3.2

Example 3.3 (Cournot duopoly) Assume that two firms produce identical product
or offer the same service to a homogeneous market. Let x and y denote the outputs
of the firms, so the total supply to the market is s = x + y. Let L1 and L2 be the
capacity limits of the firms, so 0 � x � L1 and 0 � y � L2. If C1(x) and C2(y) are
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the cost functions of the firms and p(s) is the inverse demand (or price) function of
the market, then the profit functions of the two firms are given as

φ1(x, y) = xp(x + y) − C1(x) (3.6)

and

φ2(x, y) = yp(x + y) − C2(y). (3.7)

In this two-person game the two firms are the players with strategy sets S1 =
[0, L1], S2 = [0, L2] and payoff functions φ1 and φ2. �

We can illustrate the best response functions and the Nash equilibria in several
special cases.

Case 1. Assume linear cost and price functions

C1(x) = x + 1, C2(y) = y + 1, p(s) = 10 − s

with L1 = L2 = 5. The payoff function of player 1 is the following:

φ1(x, y) = x(10 − x − y) − (x + 1) = 9x − x2 − xy − 1 (3.8)

with derivatives

∂φ1

∂x
= 9 − 2x − y

and

∂2φ1

∂x2
= −2 < 0.

So φ1 is strictly concave in x , so there is a unique best response of player 1 in
interval [0, 5]. The first order condition gives the stationary point x = 9−y

2 which is
a feasible strategy for player 1 with all y ∈ [0, 5], so

R1(y) = 9 − y

2
.

Similarly,

R2(x) = 9 − x

2

and the Nash equilibrium can be obtained as the unique solution of equations
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x = 9 − y

2
, y = 9 − x

2

which is x∗ = y∗ = 3. The best responses are illustrated in Fig. 3.3.
Case 2. Assume linear price and quadratic cost functions:

p(s) = 10 − s, C1(x) = x + x2, C2(y) = y + y2

with L1 = L2 = 5 as before. The payoff function of player 1 is clearly

φ1(x, y) = x(10 − x − y) − (x + x2) = 9x − 2x2 − xy. (3.9)

The stationary point is obtained from equation

∂φ1

∂x
= 9 − 4x − y = 0

which is x = 9−y
4 and similarly y = 9−x

4 resulting again a unique equilibrium: x∗ =
y∗ = 9

5 = 1.8.

Fig. 3.3 Best responses in Case 1

Case 3. Assume capacity limits L1 = L2 = 1 and price function p(s) = 2 − s and
assume that the cost functions are C1(x) = x − x2

4 and C2(y) = y − y2

4 . The profit
of player 1 is

φ1(x, y) = x(2 − x − y) − x + x2

4
= x − 3x2

4
− xy (3.10)

with derivatives
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∂φ1

∂x
= 1 − 6x

4
− y

and so the stationary point is

x = 2(1 − y)

3

which is again feasible strategy for player 1. The best response of player 2 is similarly

y = 2(1 − x)

3

leading to a unique equilibrium again: x∗ = y∗ = 2
5 = 0.4 .

Case 4. Keep the same capacity limits and price function but change the cost functions
to C1(x) = x − x2 and C2(y) = y − y2. The profit of player 1 is now

φ1(x, y) = x(2 − x − y) − (x − x2) = x − xy (3.11)

with derivative

∂φ1

∂x
= 1 − y

which is positive as y < 1 and zero for y = 1. Therefore φ1 strictly increases in x as
y < 1 and constant for y = 1. Therefore

R1(y) =
{
1 if y < 1

[0, 1] if y = 1.

The best response of player 2 is similar:

R2(x) =
{
1 if x < 1

[0, 1] if x = 1.

The best responses and the Nash equilibria are illustrated in Fig. 3.4.
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Fig. 3.4 Best responses in Case 4

Clearly there are infinitely many equilibria:

{x∗ = 1, 0 � y∗ � 1} and {y∗ = 1, 0 � x∗ � 1}.

Case 5. Keep the same price function and capacity limits as in the previous case but
change the cost functions to C1(x) = 2x − 2x2 and C2(y) = 2y − 2y2. The payoff
function of player 1 is now

φ1(x, y) = x(2 − x − y) − 2x + 2x2 = x2 − xy (3.12)

which is a convex function, so its maximum is obtained either at x = 0 or x = 1. At
x = 0, φ1(0, y) = 0 and at x = 1, φ1(1, y) = 1 − y. So the best response of player
1 is

R1(y) =
{
1 if y < 1

{0; 1} if y = 1.

Similarly,

R2(x) =
{
1 if x < 1

{0; 1} if x = 1.

Figure3.5 shows the best responses, and the unique equilibrium x∗ = y∗ = 1.
In all previous cases we had examples with unique or infinitely many equilibria.

In the next case we will have a duopoly with three equilibria.
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Fig. 3.5 Best responses in Case 5

Case 6. Assume L1 = L2 = 1, p(s) = 7
6 − s

2 , C1(x) = x − x2

3 , and C2(y) = y −
y2

3 . In this case

φ1(x, y) = x(
7

6
− x

2
− y

2
) − (x − x2

3
) = x

6
− x2

6
− xy

2
. (3.13)

The stationary point is the solution of the first order condition

1

6
− x

3
− y

2
= 0

that is,

x = 1 − 3y

2
.

So the best response of player 1 is the following :

R1(y) =
{

1−3y
2 if y � 1

3

0 if y > 1
3 .

Similarly,

R2(x) =
{

1−3x
2 if x � 1

3

0 if x > 1
3 .

These functions are shown in Fig. 3.6, and there are three points, ( 12 , 0), (0,
1
2 )

and ( 15 ,
1
5 ) which are on both best response curves, so they are the equilibria of the

duopoly.
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Fig. 3.6 Best responses in Case 6

Example 3.4 (Price war) There are two firms producing and selling the same kind
of product. Both decide on the selling prices P1 and P2 which are the strategies of
the players. Assume that the maximum price they can select is P . Since customers
will buy the product from that firm which charges lower price, the demand function
is D = A − P̄ , where P̄ = min{P1, P2}. Assume A>2P . Therefore the strategy set
of the players is the interval [0, P] with payoff functions

φ1 (P1, P2) =
⎧⎨
⎩

P1 (A − P1) if P1 < P2
1
2 P1 (A − P1) if P1 = P2
0 if P1 > P2

and

φ2 (P1, P2) =
⎧⎨
⎩

P2 (A − P2) if P2 < P1
1
2 P2 (A − P2) if P2 = P1
0 if P2 > P1

If P1 < P2 then all customers will buy the product on the lower price P1, if P2 < P1
then they will buy on the lower price P2, and if P1 = P2 then the firms will share
the market. Figure3.7. shows the payoff function of Player 1, the payoff function of
Player 2 is similar.
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Fig. 3.7 Payoff of Player 1 in Example 3.4

Notice that the graph of function P1(A-P1) is a concave parabola with two zeros,
at 0 and A. Therefore the vertex occurs at P1 = A

2 and the function increases in
interval

[
0, A

2

]
and therefore in intervals [0, P] and

[
P, A

2

]
as well. Since P2 ≤ P ,

functionφ1 does not have amaximum in interval [0, P] it has a supremum at P1 =P2,
which is not maximum since at this point φ1 jumps down. So no equilibrium exists.
�

Example 3.5 (Timing game) Two individuals want to get a valuable object, which
is valued as v1 and v2 by them, respectively. Both of them want to wait with giving
an offer hoping that the other will give up, so he can get the object. It is assumed that
waiting is costly. Price wars, isolation of a community in a war can be mentioned as
particular examples. The individuals are the players, the strategies are their decisions
when to quit, t1 and t2. This situation can be modeled as a two-person game in which
the players are the two competing individuals, their strategy sets are S1 = S2 =
[0,∞). In defining the payoff functions we have to consider three cases. If t1 < t2,
then player 1 gives up first, so player 2 gets the item with v2 benefit, however his
waiting time t1 is equivalent to a loss of t1. Player 1 does not have any benefit, since
he does not get the item, but he also has the same loss as player 2 because of the lost
time period of length t1. If t1 = t2, then both have the same loss t1(= t2) and each of
them has a 50% chance to win the item. If t1 > t2, then we have the first case with
interchanged players. So the payoff function of player 1 is the following:

φ1(t1, t2) =

⎧⎪⎨
⎪⎩

−t1 if t1 < t2
1
2v1 − t1 if t1 = t2
v1 − t2 if t1 > t2.

(3.14)
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The payoff function of player 2 is similar, then player 2 takes over the place of
player 1. In order to find the best response of player 1, we illustrate φ1 in Fig. 3.8 in
three different cases, when v1 > t2, v1 = t2 and v1 < t2. �

Fig. 3.8 Payoff function of player 1 in Example 3.5

In interval [0, t2) the function is the −45 degree line starting at the origin. In
interval (t2,∞) the function is constant, which is positive if v1 > t2, zero as v1 = t2
and negative for v1 < t2. When t1 = t2, then 1

2v1 − t1 = 1
2 (−t1 + v1 − t2), that is,

the value of φ1 is the midpoint between the left hand side and right hand side limits.
In the first case φ1 is maximal if t1 > t2, in the second case if t1 = 0 or t1 > t2, and
in the third case only when t1 = 0. That is,

R1(t2) =

⎧⎪⎨
⎪⎩

(t2,∞) if v1 > t2
{0} ∪ (t2,∞) if v1 = t2
0 if v1 < t2.

The best response of player 2 is similar by interchanging the two players.
Figure3.9 illustrates R1(t2) and Fig. 3.10 shows both R1(t2) and R2(t1), where R1(t2)
is the lighter area and R2(t1) is the darker area, and it is assumed that v1 < v2.

The points which are in both best responses are the equilibria:

{t1 � v2 and t2 = 0} ∪ {t2 � v1 and t1 = 0}.
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Fig. 3.9 Illustration of R1(t2)

Fig. 3.10 Best responses in Example 3.5

Example 3.6 (Position game) Two manufacturers produce similar products with
quality parameters x1 and x2. The expectation of the customers is M as the ideal
quality indicator. In the competition that manufacturer wins who’s quality is closer
to the ideal value. So the two players are the manufacturers, their strategies are x1
and x2 as their quality indicators with strategy sets S1 = S2 = [0,∞). The payoff
function of player 1 is clearly

φ1(x1, x2) =

⎧⎪⎨
⎪⎩
1 if |x1 − M | < |x2 − M |
0 if |x1 − M | = |x2 − M |
−1 if |x1 − M | > |x2 − M |.

(3.15)

The payoff of player 2 is similar by interchanging the players. In order to find the
best responses we will illustrate again the payoff function of player 1, in which we
consider three cases: x2 > M, x2 = M and x2 < M . In the first case player 1 wins
if |x1 − M | < x2 − M which can be rewritten as
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2M − x2 < x1 < x2.

Player 1 is the loser if x1 < 2M − x2 or x1 > x2. There is a tie if 2M − x2 = x1,
or x1 = x2. If x2 = M , then player 1 cannot win, loses if x1 �= M and there is a
tie if x1 = M . In the third case player 1 wins if |x1 − M | < M − x2 which can be
rewritten as x2 < x1 < 2M − x2. There is a tie if either x1 = x2 or x1 = 2M − x2.
Otherwise player 1 is the loser. Figure3.11 shows the payoff of player 1, from which
its best response is clearly the following:

R1(x2) =

⎧⎪⎨
⎪⎩

(2M − x2, x2) if x2 > M

M if x2 = M

(x2, 2M − x2) if x2 < M.

�
The two best responses are shown in Fig. 3.12, where R1(x2) is the darker area,

and R2(x1) is the lighter. There is a unique equilibrium: x1 = x2 = M , which means
that both manufacturers have to produce according to the expectation of the market.

Fig. 3.11 Payoff function of player 1 in Example 3.6

Example 3.7 (Location game) Two icecream sellers compete in a beach, and want
to find ideal locations for their shops. It is assumed for the sake of simplicity that
the beach is the unit interval [0, 1], so the possible locations are x1 ∈ [0, 1] and
x2 ∈ [0, 1]. The possible buyers are uniformly distributed along the beach, and each
of them buys icecream from the shop which is closer to his location. The number of
customers for each shop is therefore proportional to the length of that part of the unit
interval which contains points closer to it than to its competitor. Therefore in this two-
person game the icecream sellers are the players with strategy sets S1 = S2 = [0, 1],
and with payoff function for player 1
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φ1(x1, x2) =

⎧⎪⎨
⎪⎩

x1+x2
2 if x1 < x2

1
2 if x1 = x2
1 − x1+x2

2 if x1 > x2

(3.16)

and a similar φ2(x1, x2) for player 2, where the players are interchanged. If x1 < x2,
then the points of interval [0, x1+x2

2 ) are closer to x1, if x1 = x2 then the players
equally share the market, and if x1 > x2, then the points of interval ( x1+x2

2 , 1] are
closer to x1. The lengths of these intervals in the first and third cases are x1+x2

2 and
1 − x1+x2

2 . Function (3.16) is illustrated in Fig. 3.13, where we distinguish between
three cases: x2 < 1

2 , x2 = 1
2 and x2 > 1

2 . The function values are indicated at the
points in the figure.

Fig. 3.12 Best responses in Example 3.6

Fig. 3.13 Payoff of player 1 in Example 3.7
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In the first and third cases there is no best response, the payoff function has
surpremum but no maximum. So best response exists only for x2 = 1

2 , and then
R1(x2) = 1

2 . The same holds for the second player, so the game has a unique equi-
librium, x1 = x2 = 1

2 . �

Example 3.8 (Market sharing) Consider two firms competing for a market of unit
value. Let x1 and x2 denote their efforts to get as large as possible portions of the
market. The firms are the players, their strategies are x1, x2 � 0. So the strategy sets
are S1 = S2 = [0,∞). The payoff of player 1 is

φ1(x1, x2) = x1
x1 + x2

− x1 (3.17)

since it can get x1
x1+x2

portion of the market and player 2 will get the other, x2
x1+x2

part of it. In order to determine the best response of player 1, we have to find the
maximum of φ1, as a function of x2. The first order condition

1 · (x1 + x2) − x1 · 1
(x1 + x2)2

− 1 = 0

gives the stationary point

x1 = √
x2 − x2.

Since

∂2φ1

∂x21
= −x2 · 2 · (x1 + x2)

(x1 + x2)4
< 0,

φ1 is strictly concave in x1 implying the uniqueness of the optimum. Since the best
response has to be non-negative,

R1(x2) =
{√

x2 − x2 if x2 � 1

0 if x2 > 1.

The best response R2(x1) is similar by replacing x2 by x1. They are illustrated
in Fig. 3.14 showing that there are two equilibria: x1 = x2 = 0 and x1 = x2 = 1

4 .
However the first equilibrium is only fictitious, since φ1 is not defined there. So only
the point x1 = x2 = 1

4 is considered as the equilibrium of the game. �
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Fig. 3.14 Best responses in Example 3.8

Example 3.9 (Duel without sound) In old times an insult to a gentlemen usually
resulted in a duel. The victim of the insult called for a duel, which was performed
either with a sword or with a gun. In the second case the insulter and the victim
selected a mutually acceptable judge, who gave identical guns to both of them with
only one bullet in each. So each of them had one gun with a single bullet in it. Then
they had to stand facing each other from a given distance, and at a signal of the judge
they had to start walking toward each other. The decision of each participant is the
time (or place) when he will shoot at the other, selected at the beginning. The first
injury (or death) is the end of the duel, and if there is no injury (when none of them
is hurt or killed) then the duel is a tie. There are two possibilities in conducting a
duel with respect to the guns. We talk about duel without sound if the guns have
silencers, in which case the participants do not observe any shot at them if it did not
cause damage, that is, they do not observe if the other participant already used up his
only bullet. If the guns have no silencers, then we talk about duel with sound. In this
case a use of the bullet without success results in certain loss (injury or death), since
the other participant knows for sure that he cannot shoot at him anymore, so he can
walk next to him and shoot at him from a very small distance. In this example we
examine duels without sound, the other case will be the subject of the next example.

For the sake of simplicity assume that the initial distance between the two duelists
is 2 units and they walk toward each other with equal speed. So without shooting
they would meet in the middle. The players are the duelists. The strategy of each
player is the place when he will shoot: x1 ∈ [0, 1] and x2 ∈ [0, 1]. Let P1(x1) and
P2(x2) be the hitting probabilities of the players when player 1 shoots at location x1
and player 2 shoots at x2. Let the payoff of the winner be 1, that of the loser −1, and
0 in the case of a tie for both. The payoff function of player 1 is the following:

φ1(x1, x2) =

⎧⎪⎨
⎪⎩
P1(x1) · 1 − (

1 − P1(x1)
)
P2(x2) if x1 < x2

P1(x1) − P2(x2) if x1 = x2
P2(x2) · (−1) + (

1 − P2(x2)
)
P1(x1) if x1 > x2.

(3.18)
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If x1 < x2, then player 1 is the winner if he injures player 2 and he is the loser if
player 2 can injure him later. Otherwise the result is a tie. The third case is similar by
interchanging the players andwinning by losing. If x1 = x2, then they shoot together,
so player 1wins if only his shot finds its target, player 2wins if only he causes damage
and the game a tie if either both hurt the other or none of them causes damage to the
other. In order to find best responses and possible equilibrium consider the special
case of P1(x1) = x1 and P2(x2) = x2 meaning that the hitting probabilities are equal
to zero at the starting locations, equal to 1 in the middle (when the distance between
them is zero), and both functions are linear. In this case

φ1(x1, x2) =

⎧⎪⎨
⎪⎩
x1 − (1 − x1)x2 = x1 + x1x2 − x2 if x1 < x2
0 if x1 = x2
−x2 + (1 − x2)x1 = x1 − x2 − x1x2 if x1 > x2

which is illustrated in Fig. 3.15. There is no maximum if x22 > 1 − 2x2, and if x22 �
1 − 2x2, then φ1 has its maximum at x1 = 1. So best response of player 1 exists only
if

x22 + 2x2 − 1 � 0

that is, when x2 �
√
2 − 1 ≈ 0.4142. The same holds for player 2 as well. The best

responses are shown in Fig. 3.16 from which it is clear that no equilibrium exists.�

Fig. 3.15 Payoff φ1 in Example 3.9
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Fig. 3.16 Best responses in Example 3.9

Example 3.10 (Duel with sound) The major difference between this case and the
previous example is the fact that shooting without hit results in certain loss. Keeping
the same notation as before, the payoff of player 1 is now the following:

φ1(x1, x2) =

⎧⎪⎨
⎪⎩
P1(x1) · 1 − (

1 − P1(x1)
)

if x1 < x2
P1(x1) − P2(x2) if x1 = x2
−P2(x2) + (

1 − P2(x2)
)

if x1 > x2.

(3.19)

In the special case of P1(x1) = x1 and P2(x2) = x2 we have

φ1(x1, x2) =

⎧⎪⎨
⎪⎩
2x1 − 1 if x1 < x2
0 if x1 = x2
1 − 2x2 if x1 > x2,

which is illustrated in Fig. 3.17 in three cases: x2 < 1
2 , x2 = 1

2 and x2 > 1
2 .

In the first case all x1 ∈ (x2, 1] give maximum, in the second case all x1 ∈ [ 12 , 1]
provide maximum, but in the third case no maximum exists. Therefore the best
response of player 1 can be given as

R1(x2) =

⎧⎪⎨
⎪⎩

(x2, 1] if x2 < 1
2

[ 12 , 1] if x2 = 1
2

φ if x2 > 1
2 .

The best response of player 2 is analogous. Figure3.18 shows the best responses,
in which R1(x2) is the darker and R2(x1) the lighter area. The only equilibrium is
x1 = x2 = 1

2 , since it is the only point belonging to both R1(x2) and R2(x1). �
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Fig. 3.17 Payoff φ1 in Example 3.10

Fig. 3.18 Best responses in Example 3.10

Example 3.11 (Spying game)Assume that a spy goes to an enemy territory to gather
important intelligence information. His decision variable x1 is the level of his effort.
He clearly faces the counter intelligence agency, which has its decision variable
x2 representing its effort to catch spies. So the strategy set of both of them is the
interval S1 = S2 = [0,∞). For the spy there are two indicators of his activity. First
let P(x1, x2) denote the probability that his activity will be discovered and therefore
he will be arrested. This function is increasing in both variables: larger value of x1
exposes easier his activity, so he can be caught which is the case with higher value
of x2 as well. If he gets arrested, his organization loses his value, which is denoted
by U . If he is not arrested, then let V (x1) denote the value of the information he
obtains and forwards to his organization. The payoff of the spy (player 1) is given as
the expectation
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φ1(x1, x2) = P(x1, x2)(−U ) + (
1 − P(x1, x2)

)
V (x1). (3.20)

The gain of the spy is the loss of counter intelligence (player 2), so its payoff
is φ2(x1, x2) = −φ1(x1, x2). We have now a zero-sum game. In order to find best
responses and possible equilibrium consider the special case of

U = 4, P(x1, x2) = 1

8
(x1 + x2), V (x1) = x1.

To avoid too large probability values assume that the maximum efforts for the
players are x∗

1 and x∗
2 such that x∗

1 + x∗
2 � 8. In this case

φ1(x1, x2) = 1

8
(x1 + x2)(−4) + (

1 − 1

8
(x1 + x2)

)
x1 = −1

8
x21 − 1

8
x1x2 + x1

2
− x2

2

which is a concave parabola in x1. Since

∂φ1

∂x1
= −1

4
x1 − 1

8
x2 + 1

2
,

the stationary point is x1 = 4−x2
2 , so the best response of the spy is the following:

R1(x2) =
{
0 if x2 > 4
4−x2
2 otherwise.

Since

φ2(x1, x2) = −φ1(x1, x2) = 1

8
x21 + 1

8
x1x2 − x1

2
+ x2

2

strictly increases in x2, the best response of player 2 is R2(x1) = x∗
2 . �

The best responses are illustrated in Fig. 3.19, where we assume that x∗
1 > 2. If

x∗
2 > 4, then the equilibrium is x1 = 0, x2 = x∗

2 meaning that the best choice of the
spy is to go home and do nothing if the counter espionage agency is very strong.
Otherwise the equilibrium is x1 = 4−x∗

2
2 , x2 = x∗

2 meaning that x1 decreases with
increasing strength of the counter espionage agency.
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Fig. 3.19 Best responses in Example 3.11

Example 3.12 (First price auction) Two agents are bidding for a valuable item,
which is sold in an auction. They have to send their bids to the companywho conducts
the auction before a given date and the agent with the higher bid can purchase the
item. Assume that they have subjective valuations, v1 and v2 of the item. The agents
are the players and their strategies are their bids, x1 and x2. The payoff of player 1 is
therefore

φ1(x1, x2) =
{

v1 − x1 if x1 � x2
0 otherwise.

(3.21)

Herewe assume that v1 > v2 and in the case of a tie the agentwith higher valuation
gets the item. Similarly

φ2(x1, x2) =
{

v2 − x2 if x2 > x1
0 otherwise.

(3.22)

Notice that this game is not symmetric with respect to the players. Payoff φ1 is
shown in Fig. 3.20, where three cases are considered. The best response of player 1
is given as follows:

R1(x2) =

⎧⎪⎨
⎪⎩
x2 if x2 < v1

[0, x2] if x2 = v1

[0, x2) if x2 > v1.

Similarly, payoff φ2 is given in Fig. 3.21, from which the best response of player
2 can be seen as

R2(x1) =
{

φ if x1 < v2

[0, x1] if x1 ≥ v2.
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The best responses are illustrated in Fig. 3.22, from which it is clear that the
equilibria set is {(x1, x2)|v2 � x1 = x2 � v1}. �

Fig. 3.20 Payoff φ1 in Example 3.12

Fig. 3.21 Payoff φ2 in Example 3.12

Fig. 3.22 Best responses in Example 3.12



3.1 Examples of Two-Person Continuous Games 47

Example 3.13 (Second price auction) In the case of a second price auction the
mechanism is the same as in a first price auction with the only difference that higher
bidder has to pay the bid of its competitor, that is, the winner does not need to pay his
offered price, only the lower bid of the other bidder. So the payoffs are as follows:

φ1(x1, x2) =
{

v1 − x2 if x1 ≥ x2
0 otherwise

(3.23)

and

φ2(x1, x2) =
{

v2 − x1 if x2 > x1
0 otherwise.

(3.24)

Figures 3.23 and 3.24 show these payoffs for three cases similarly to the previous
example.

So the best responses are

R1(x2) =

⎧⎪⎨
⎪⎩

[x2,∞) if x2 < v1

[0,∞) if x2 = v1

[0, x2) if x2 > v1

and

R2(x1) =

⎧⎪⎨
⎪⎩

(x1,∞) if x1 < v2

[0,∞) if x1 = v2

[0, x1] if x1 > v2.

They are illustrated in Fig. 3.25, from which we see that there are again infinitely
many equilibria and they are the points of the darkest region. �

Fig. 3.23 Payoff φ1 in Example 3.13
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Fig. 3.24 Payoff φ2 in Example 3.13

Fig. 3.25 Best responses in Example 3.13

3.2 Examples of N-Person Continuous Games

In this section we will introduce the general N -person extensions of some of the
games which were examined in the previous section for the special two-person case.

Example 3.14 (Sharing a pie) Assume now that a group of N children is promised
to get a pie to be shared among them. Each of them was asked to present his demand
of the pie by telling how big part of the pie he wants. These demands are presented
independently when none of the children knows the demands of the others before
presenting his request. If the sum of the demands is larger than the entire pie, then
none of the children gets anything, and if the total request is feasible, then each child
receives the requested amount. The children are the players, their requested amounts
xk ∈ [0, 1] are the strategies, and the payoff of player k is given as

φk(x1, . . . , xN ) =
{
xk if

∑N
i=1 xi � 1

0 otherwise.
(3.25)

With given x1, . . . , xk−1, xk+1 . . . , xN the best choice of player k is to ask for the
remaining amount 1 − ∑

i �=k xi , which can be proved as follows. If player k selects
less than this amount, than he can increase his demand up to this value and increase
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payoff. If he asks more than this amount, then he will get nothing, so decreasing
demand until this value clearly would increase his payoff. So the game has infinitely
many equilibria which form the set

{
(x1, . . . , xN )|0 � xk � 1 for all k,

N∑
k=1

xk = 1
}
.

�

Example 3.15 (Cournot oligopoly) Consider now N firms producing the same prod-
uct or offer the same service to a homogeneous market. Let xk denote the output
(production level) of firm k, then the total industry output is s = ∑N

k=1 xk . If Lk

is the capacity limit of firm k, then 0 � xk � Lk . The firms are the players, their
strategies are the produced amounts, so the strategy set of player k is Sk = [0, Lk]. In
addition let Ck(xk) denote the cost function of firm k, and p(s) the inverse demand
(or price) function of the market. The payoff function of firm k is its profit:

φk(x1, . . . , xN ) = xk p
( N∑

i=1

xi
)

− Ck(xk). (3.26)

In the earlier Example 3.3 we saw some two-person special cases of this game.
In this example we will show that under certain conditions there is always a unique
equilibrium. The proof will be constructive giving a computer method to find the
equilibrium.

Assume that functions p(s) and Ck(xk)(k = 1, 2, . . . , N ) are twice continuously
differentiable, furthermore

(a) p′(s) < 0 for all s ∈
[
0,

N∑
i=1

Li

]
;

(b) xk p
′′(s) + p′(s) � 0 and

(c) p′(s) − C ′′
k (xk) < 0 for all s ∈

[
0,

N∑
i=1

Li

]
and xk ∈

[
0, Lk

]
.

Notice first that

∂φk

∂xk
= p

( N∑
i=1

xi
)

+ xk p
′
( N∑

i=1

xi
)

− C
′
k(xk) (3.27)

and
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∂2φk

∂x2k
= 2p′

( N∑
i=1

xi
)

+ xk p
′′
( N∑

i=1

xi
)

− C ′′
k (xk).

Assumptions (b) and (c) imply that this second order derivative is negative, so φk

is strictly concave in xk with any given values of x1, . . . , xk−1, xk+1 . . . , xN . So the
best response of firm k is unique and is given as

Rk(sk) =

⎧⎪⎨
⎪⎩
0 if p(sk) − C ′

k(0) � 0

Lk if p(Lk + sk) + Lk p′(Lk + sk) − C ′
k(Lk) � 0

z∗
k otherwise

(3.28)

where sk = ∑
i �=k xi and z∗

k is the unique solution of equation

p(zk + sk) + zk p
′(zk + sk) − C ′

k(zk) = 0 (3.29)

in interval [0, Lk]. Let gk(zk) denote the left hand side of Eq. (3.29). It is strictly
decreasing in zk because of ∂2φk

∂x2k
< 0, gk(0) = p(sk) − C ′

k(0) > 0 and gk(Lk) =
p(Lk + sk) + Lk p′(Lk + sk) − C ′

k(Lk) < 0 in the third case of (3.28). So Eq. (3.29)
has a unique solution. Since functions p, p′, C ′

k are continuous, Rk(sk) is also
continuous in sk . The implicit function theorem implies that zk is a differentiable
function of sk in the third case of (3.28), so (3.29) can be rewritten as

p
(
zk(sk) + sk

) + zk(sk)p
′(zk(sk) + sk

) − C
′
k

(
zk(sk)

) = 0.

Implicitly differentiating this equation with respect to sk we have

p′ · (z
′
k + 1) + z

′
k · p′ + zk · p′′ · (z

′
k + 1) − C

′′
k · z′

k = 0

implying that

z
′
k = − p′ + zk p

′′

2p′ + zk p
′′ − C

′′
k

(3.30)

which is nonpositive, since

p′ + zk p
′′ � 0 and 2p′ + zk p

′′ − C
′′
k = (p′ + zk p

′′
) + (p′ − C

′′
k ) < 0.

So Rk(sk) has three segments, 0 and Lk , and a strictly decreasing segment in
between. From (3.30) we also conclude that

− 1 < R′
k(sk) � 0 (3.31)
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for all sk .
We can also rewrite the best response of firm k as a function of the industry

output s:

Rk(s) =

⎧⎪⎨
⎪⎩
0 if p(s) − C

′
k(0) � 0

Lk if p(s) + Lk p′(s) − C
′
k(Lk) � 0

z∗
k otherwise

(3.32)

where z∗
k is the unique solution of equation

p(s) + zk p
′(s) − C

′
k(zk) = 0 (3.33)

in interval [0, Lk]. Let now gk(zk) denote the left hand side of Eq. (3.33). Clearly

g
′
k(zk) = p′(s) − C

′′
k (zk) < 0,

so gk(zk) strictly decreases in zk , furthermore

gk(0) = p(s) − C
′
k(0) > 0 and gk(Lk) = p(s) + Lk p

′(s) − C
′
k(Lk) < 0

in the third case of (3.32). Therefore there is a unique solutionwhich is a differentiable
function of s in this case. So the zk(s) solution satisfies equation

p(s) + zk(s)p
′(s) − C

′
k

(
zk(s)

) = 0.

Implicitly differentiating this equation with respect to s we have

p′ + z′
k p

′ + zk · p′′ − C
′′
k · z′

k = 0

implying that

z′
k = − p′ + zk p

′′

p′ − Ck
′′ � 0. (3.34)

Since in the first two cases of (3.32) the best response is constant we conclude
that Rk(s) is a continuous nonincreasing function of s. Consider finally equation

N∑
k=1

Rk(s) − s = 0. (3.35)

The left hand side, which is now denoted by g(s), is strictly decreasing in s,
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g(0) =
N∑

k=1

Rk(0) � 0 and g
( N∑

i=1

Li

)
=

N∑
k=1

(
Rk

( N∑
i=1

Li

)
− Lk

)
� 0,

so there is a unique solution s∗ of Eq. (3.35), and then the equilibrium output levels
are obtained as x∗

k = Rk(s∗). Since g(s) is strictly decreasing, standard methods can
be used to solve Eq. (3.35). See for example, Szidarovszky and Yakovitz (1978).

In the case of duopoly the existence of a unique equilibrium follows immediately
from the contraction mapping theorem. Notice that the equilibrium is the solution of
the following equations:

x = R1(y)

y = R2(x)
(3.36)

where x and y denote the output levels of the firms. Since the feasible sets of x and
y are compact and both R′

1 and R′
2 are piecewise continuous, there is a minimum of

both derivatives r ′
1min and r

′
2min , so from (3.31),

−1 < r ′
kmin ≤ R′

k ≤ 0.

Therefore (3.36) is a fixed point problem of a contraction mapping implying the
existence of a unique solution. �

Example 3.16 (Timing game) Assume now that N agents want to get a valuable
itemwhich is valued as v1 > v2 > · · · > vN by them.As negotiations are in progress,
each of them wants to wait until all competitors give up negotiating and walk away,
so he can get the item. Waiting any time period t results in a loss of t units to the
agents. The players are the agents, the strategy of player k is tk � 0, and its payoff
function is

φk(t1, . . . , tN ) =
{

vk − tk if tk = max{t1, . . . , tN }
−tk otherwise

(3.37)

where we assume that the tk values are different. �

Example 3.17 (Position game) Consider now N manufacturers producing similar
products with quality parameters x1, x2, . . . , xN . The expectation of the market is M
as the ideal quality indicator. If the manufacturers are the players and their strategies
are x1, . . . , xN , then the strategy set of player k in Sk = [0,∞). We assume that
the value of the market is 1 and the firms have the market shares with respect to
their qualities meaning that the firm who’s quality parameter is closest to M gets the
largest share, and so on, the firm with quality parameter farthest from M gets the
smallest market share. So we may assume that the payoff function of manufacturer
k is
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φk(x1, . . . , xN ) = |xk − M |−1∑N
i=1 |xi − M |−1

. (3.38)

Since this payoff depends on only the quantities |xk − M |−1, we can consider the
values zk = |xk − M |−1 as strategies, zk > 0 with the transformed payoff functions

φk(z1, . . . , zN ) = zk∑N
i=1 zi

. (3.39)

Notice that

∂φk

∂zk
=

∑N
i=1 zi − zk( ∑N

i=1 zi
)2 =

∑
i �=k zi( ∑N
i=1 zi

)2 > 0,

so φk strictly increases in zk , so there is no finite best response, only zk → ∞, in
which case xk = M for all manufacturers. �

Example 3.18 (Market sharing) Assume that N agents compete for a market of unit
value. Let xk denote the effort of agent k to get as large as possible portion of the
market. The agents are the players and their efforts are their strategies. So the strategy
set of player k is Sk = [0,∞). The payoff of player k is similar to (3.17):

φk(x1, . . . , xN ) = xk∑N
i=1 xi

− xk (3.40)

where the first term shows the proportion of the market that player k will get. Notice
that

∂φk

∂xk
= 1 · ∑N

i=1 xi − xk · 1(∑N
i=1 xi

)2 − 1 = sk
(xk + sk)2

− 1

with sk = ∑
i �=k xi , furthermore

∂2φk

∂x2k
= −2sk(xk + sk)

(xk + sk)4
= −2sk

(xk + sk)3
< 0

showing that with given sk , φk is strictly concave in xk . Therefore there is a unique
best response of player k. The stationary point is the solution of equation

sk
(xk + sk)2

− 1 = 0

implying that

xk = √
sk − sk .
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Therefore the best response function of agent k is as follows:

Rk(sk) =
{√

sk − sk if sk � 1

0 if sk > 1.

The shape of this function is the same as shown in Fig. 3.14. The interior equilib-
rium is symmetric, x1 = · · · = xN = x∗ such that

x∗ = √
(N − 1)x∗ − (N − 1)x∗

implying that

x∗ = N − 1

N 2
.

In this case sk = (N − 1)x∗ = (N−1)2

N 2 which is always less than one. �

Example 3.19 (First price auction) Assume that N agencies are bidding for a valu-
able item, and the bids are sent in before a given date. The agents have no information
about the bids of the others. The agents can be considered as the players, their bids
are their strategies, xk ∈ [0,∞), so the strategy set of each player is Sk = [0,∞).
The agent with the highest bid can purchase the item and in the case of more than one
highest bidder the one with the highest valuation can get the item. Assume that the
valuations are v1 > v2 > · · · > vN which always can be guaranteed by renumbering
the agents. The payoff of agent k is therefore

φk(x1, . . . , xN ) =

⎧⎪⎨
⎪⎩

vk − xk if xk = max{x1, . . . , xN } and either maximum is

unique or k = min{l|xk = xl}
0 otherwise.

In Example 3.11 the two-person version of this game was discussed and it was
shown that at any equilibrium the agents have to give identical bids and since player
1 had the higher valuation, he is always the winner. We can easily show that this is
the case in the general N -person case as well, that is, always player 1 is the winner
at any equilibrium. In order to prove this fact, assume that another player, i �= 1,
is the winner. Then xi > x1. If xi > v2, then φi = vi − xi � v2 − xi < 0, so player
i could increase his payoff to zero by decreasing his bid xi , so other player could
win the item. If xi � v2, then player 1 could increase his zero payoff to v1 − xi by
increasing his bid to xi . �

Example 3.20 (Second price auction) The auction proceeds in the same way than in
the previous example with the only difference that the winner pays only the second
highest bid, not his own bid. In this case the payoff of player k becomes
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φk(x1, . . . , xN ) =

⎧⎪⎨
⎪⎩

vk − xi if xk = max{x1, . . . , xN }, and either maximum is

unique or k = min{l|xk = xl}
0 otherwise.

where xi = max{xl |l �= k}.
We have seen in Example 3.12 that even in the two-person case the set of equilibria

is a complicated set, which is the same in the general case. Therefore we leave this
issue to the interested readers. �



Chapter 4
Relation to Other Mathematical
Problems

The equilibrium problem of N -person games have strong relation to other important
mathematical problem areas such as optimization, and fixed point problems. In this
chapter we will discuss this issue.

4.1 Nonlinear Optimization

Consider a general optimization problem

maximize f (x)

subject to x ∈ X

g(x) � 0

(4.1)

where x ∈ R
n is the decision vector, X ⊆ R

n is any set (which can be even discrete)
and g(x) ∈ R

m for all x ∈ X . There is no restriction about the objective function

f : X �→ R.

The Lagrangean of this problem is defined as

L(x, u) = f (x) + uT g(x)

for all x ∈ X and 0 � u ∈ R
m .We can now define a two-person, zero-sum gamewith

strategy sets S1 = X, S2 = R
m+

( = {u|0 � u ∈ R
m}) and payoff functions φ1 = L

and φ2 = −L .

Theorem 4.1 If (x∗, u∗) is an equilibriumof the two-persongame {2; S1, S2;φ1, φ2},
then x∗ is an optimal solution of problem (4.1)
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Proof If (x∗, u∗) is an equilibrium, then for all strategies x and u,

L(x∗, u∗) � L(x, u∗)

and
−L(x∗, u∗) � −L(x∗, u).

These relations can be rewritten as

f (x∗) + u∗T g(x∗) � f (x) + u∗T g(x) (4.2)

and
− [

f (x∗) + u∗T g(x∗)
]

� −[
f (x∗) + uT g(x∗)

]
. (4.3)

From (4.3) with the selection of u = 0 we have

u∗T g(x∗) � 0. (4.4)

Next we show that g(x∗) � 0. Assume that for some i , gi (x∗) < 0. Then by select-
ing sufficiently large value of ui , (4.3) would be violated. Since u∗ � 0, clearly
u∗T g(x∗) � 0 and combining this relation with (4.4) we can conclude that

u∗T g(x∗) = 0. (4.5)

Andfinallywe can show theoptimality of x∗. Sincewehave shown that g(x∗) � 0, x∗
is feasible for (4.1). Furthermore from (4.2),

f (x∗) = f (x∗) + u∗T g(x∗) � f (x) + u∗g(x) � f (x)

for all feasible x , since u∗ and g(x) are nonnegative in every component.

�

So any optimization problem can be solved by solving for the equilibria of two-
person zero-sum games.

4.2 Fixed Point Problems

(A) Consider an N -person game, � = {N ; S1, . . . , SN ;φ1, . . . , φN } and let xk ∈ Sk
denote the strategy of player k. Then vector x = (x1, . . . , xN ) is called a simultaneous
strategy vector. Introduce the notation x−k = (x1, . . . , xk−1, xk+1, . . . , xN ) for the
simultaneous strategy vector of all players except player k. The best response set of
player k is denoted by Rk(x−k), where x−k does not contain the strategy of player k,
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howeverwe can consider Rk as the set depending on the entire vector x being the same
for all xk with fixed x−k . So we can use the notation Rk(x). An equilibrium of the
game is a simultaneous strategy vector x∗ = (x∗

1 , . . . , x
∗
N ) such that for all players,

x∗
k ∈ Rk(x∗). Introduce the set valued mapping R(x) = (R1(x), . . . , RN (x)).

Theorem 4.2 A simultaneous strategy vector x∗ is an equilibrium if and only if

x∗ ∈ R(x∗) (4.6)

that is, x∗ is a fixed point of mapping R.

(B) For all simultaneous strategy vectors x and y let

�(x, y) =
N∑

k=1

φk(x1, . . . , xk−1, yk, xk+1, . . . , xN ). (4.7)

This function satisfies the following property:

Lemma 1 x∗ is an equilibrium of the N-person game if and only if for all
simultaneous strategy vectors y,

�(x∗, x∗) � �(x∗, y). (4.8)

Proof Assume first that x∗ is an equilibrium, then for all k and yk ∈ Sk ,

φk(x
∗
1 , . . . , x

∗
N ) � φk(x

∗
1 , . . . , x

∗
k−1, yk, x

∗
k+1, . . . , x

∗
N ), (4.9)

and by summing up this inequality for k = 1, . . . , N we get (4.8).
Assume next that (4.8) holds. Select y = (x∗

1 , . . . , x
∗
k−1, yk, x

∗
k+1, . . . , x

∗
N ) then

from (4.8),

N∑

l=1

φl(x
∗
1 , . . . , x

∗
N ) �

∑

l �=k

φl(x
∗
1 , . . . , x

∗
N ) + φk(x

∗
1 , . . . , x

∗
k−1, yk, x

∗
k+1, . . . , x

∗
N ).

After cancelation of all terms for l �= k, (4.9) is obtained, so x∗ is equilibrium.

�

Define now the point-to-set mapping

H(x) = {
z|z ∈ S,�(x, z) = max

{
�(x, y)|y ∈ S

}}
(4.10)

where S = S1 × S2 × · · · × SN is the set of all simultaneous strategy vectors.
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Theorem 4.3 x∗ ∈ S is an equilibrium if and only if x∗ is a fixed point of mapping
H(x).

Proof From (4.10) it is clear that x∗ ∈ H(x∗) if and only if

�(x∗, x∗) = max
{
�(x∗, y)|y ∈ S

}

that is, for all y ∈ S, (4.8) holds. Then Lemma 1 implies the assertion.

�

Theorems 4.2 and 4.3 reduce the equilibrium problem to fixed point problems of
point-to-set or point-to-pointmappings. If the best responses of the players are always
unique, then mapping R(x) is point-to-point, otherwise point-to-set. Similarly, if the
maximum in (4.10) is always unique, thenmapping H(x) is point-to-point, otherwise
point-to-set. These theorems will be very useful in proving existence of equilibria by
applying well-known existence results of fixed points. In addition, they can provide
computer methods for finding equilibria by solving the fixed point equations and
relations.



Chapter 5
Existence of Equilibria

In Chap.2 we have seen examples of discrete static games which had no equilibrium
(Example2.7), unique equilibrium (Example2.1) and multiple equilibria (Exam-
ple2.6). We faced similar situation with continuous games in Chap. 3 (Examples3.2,
3.3 and 3.1). In this chapter we will give sufficient conditions for the existence of
equilibria in continuous games. A class of special discrete games will be discussed
later in this book.

5.1 General Existence Conditions

We have shown in Chap.4 the equivalence of equilibrium problems and fixed point
problems, therefore any existence result on fixed points can be used to show existence
of equilibria. In Appendix D the most frequently applied fixed point theorems are
summarized, theywill be the basis of the existence theorems presented in this chapter.
Consider an N person game with strategy sets S1, . . . , SN and payoff functions
φ1, . . . , φN . The best response mapping of player k was given in (3.1) as

Rk(s) = {
s∗
k |s∗

k ∈ Sk, φk(s
∗
k , s−k) = max

sk∈Sk
φ(sk, s−k)

}

where sk is the strategy of player k, s = (s1, . . . , sN ) and s−k = (s1, . . . , sk−1,

sk+1, . . . , sN ). A simultaneous strategy vector s = (s1, s2, . . . , sN ) is an equilibrium
if and only if

sk ∈ Rk(s)

for all players k. That is, when s ∈ R(s) with

R(s) = (
R1(s), . . . , RN (s)

)
.
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Assume first that for all players k and s ∈ S1 × · · · × SN , set Rk(s) has only one
element, that is, mapping s �→ R(s) is point-to-point.

The Brouwer fixed point theorem implies the following simple result.

Theorem 5.1 Assume that the strategy sets Sk of all players k are nonempty, convex,
closed, bounded subsets of finite dimensional Euclidean spaces, and the best response
mapping is one-to-one and R(s) is continuous. Then there is at least one equilibrium
of the game.

Proof If all sets Sk are nonempty, closed and bounded, then the same holds for
S = S1 × · · · × SN . Assume next that all sets Sk are convex. We can easily show
that S is also convex. Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be two points in
S. Then with 0 � α � 1,

αx + (1 − α)y = (
αx1 + (1 − α)y1, . . . , αxN + (1 − α)yN

)

where the convexity of Sk implies that for all k, αxk + (1 − α)yk ∈ Sk , so αx + (1 −
α)y ∈ S. Then the Brouwer fixed point theorem implies the existence of at least one
fixed point, which is an equibrium. �

We can also apply the Banach fixed point theorem as follows.

Theorem 5.2 Assume that the strategy sets Sk of all players k are nonempty and
closed in finite dimensional Euclidean spaces, furthermore mapping R(s) is one-to-
one and contraction on S. Then there is a unique equilibrium which can be obtained
as the limit of the iteration sequence

s(k+1) = R(s(k)) (5.1)

starting with any arbitrary initial approximation s(0) ∈ S. �

Proof It is clear, that if all sets Sk are closed, then S = S1 × · · · × SN is also closed
and then the Banach fixed point theorem implies the assertion. �

Theorem 5.1 can be easily extended to the general case when R(s) is a point-to-set
mapping. In such cases the Kakutani fixed point theorem provides existence.

Theorem 5.3 Assume that all strategy sets Sk are nonempty, convex, closed, bounded
sets in finite dimensional Euclidean spaces, R(s) for all s ∈ S is nonempty, convex,
closed set, furthermore the graph of mapping R,

GR = {
(s, s ′)|s ′ ∈ R(s), s ∈ S

}
(5.2)

is closed, then there is at least one equilibrium. �

Theorems 5.1, 5.2, 5.3 require the determination and examination of the best
response mappings of the players which is a difficult task is many cases. For this
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reason it would be helpful to check existence without knowing the best response
mappings and checking some properties of only the payoff functions. The most
commonly used such result is the Nikaido-Isoda theorem, which can be formulated
as follows (Nikaido & Isoda, 1955):

Theorem 5.4 Assume that for all players k,
(a) Sk is nonempty, convex, closed, bounded in finite dimensional Euclidean space;
(b) φk(s) is continuous in s as an N-variable function;
(c) φk(s1, . . . , sk−1, sk, sk+1, . . . , sN ) is concave in sk with all fixed strategies sl ∈ Sl
of the other players.

Then there is at least one equilibrium. �

Proof Let R(s) denote the best response mapping. We will prove that all conditions
of the Kakutani fixed point theorem are satisfied.

Notice first that S = S1 × · · · × SN is nonempty, convex, closed and bounded in a
finite dimensional Euclidean space. Set Rk(s) is the set ofmaximumpoints of the con-
tinuous, concave functionφk(s1, . . . , sk−1, sk, sk+1, . . . , sN ) in Sk withfixedvalues of
s1, . . . , sk−1, sk+1, . . . , sN , so the best response set is nonempty, convex, closed, fur-
thermore bounded, since Sk is bounded. Therefore R(s) = R1(s) × R2(s) × · · · ×
RN (s) is also nonempty, convex, closed and bounded. Consider finally the graph
(5.2) of mapping R(s). In order to show that it is a closed set consider a convergent
sequence fromGR, (s(l), s

′(l)) → (s∗, s ′∗).Wewill prove that (s∗, s ′∗) ∈ GR aswell.
Since s ′(l) ∈ R(s(l)), for all players k,

φk
(
s(l)
1 , . . . , s(l)

k−1, s
′(l)
k , s(l)

k+1, . . . , s
(l)
N

)
� φk

(
s(l)
1 , . . . , s(l)

k−1, s
′
k, s

(l)
k+1, . . . , s

(l)
N

)
(5.3)

for all s ′
k ∈ Sk . Let l → ∞, then the continuity of φk implies that

φk(s
∗
1 , . . . , s

∗
k−1, s

′∗
k , s∗

k+1, . . . , s
∗
N ) � φk(s

∗
1 , . . . , s

∗
k−1, s

′
k, s

∗
k+1, . . . , s

∗
N ) (5.4)

that is, s ′∗
k ∈ Rk(s∗), and so (s∗, s ′∗) ∈ GR . �

We can next show that all conditions of the theorem are needed to guarantee
the existence of an equilibrium by presenting particular examples when all by one
conditions of the theorem hold and the game has no equilibrium.

Example 5.1 Any discrete game satisfies all but one condition, when the strategy
sets are not convex. In Example2.7 we had no equilibrium. �

Example 5.2 Let N = 2, S1 = S2 = [0, 1) and φ1 = φ2 = s1 + s2. The strategy
sets are not closed, since the right end point of the interval does not belong to them.
All other conditions however hold. The players have no best responses since neither
s1 nor s2 has maximum in [0, 1), so there is no equilibrium. �

Example 5.3 Let N = 2, S1 = S2 = [0,∞) and φ1 = φ2 = s1 + s2 as before. The
strategy sets are unbounded, the players have no best responses, so there is no equi-
librium. �
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Example 5.4 Let N = 2, S1 = S2 = [0, 1],

φ1 =
{
s1 + s2 if s1 < 1

s2 if s1 = 1

and

φ2 =
{
s1 + s2 if s2 < 1

s1 if s2 = 1.

These payoff functions are shown in Fig. 5.1 from which it is clear that they are
not continuous, however all other conditions of the theorem are satisfied. Since no
best responses exist, the game has no equilibrium. �

Fig. 5.1 Payoff functions of Example 5.4

Example 5.5 Let N = 2, S1 = S2 = [0, 1],

φ1 = (s1 − s2)
2 + 1, φ2 = −(s1 − s2)

2 + 1

in which case all conditions of the theorem hold except that φ1 is not concave in s1.
The best responses are as follows:

R1(s2) =

⎧
⎪⎨

⎪⎩

1 if s2 < 1
2

0 if s2 > 1
2

{0, 1} if s2 = 1
2

and
R2(s1) = s1.
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These best responses are shown in Fig. 5.2 from which it is clear that no equilib-
rium exists. �

Fig. 5.2 Best responses in Example 5.5

5.2 Bimatrix and Matrix Games

Consider a two-person finite game, when the strategy sets are S1 = {1, 2, . . . ,m1}
and S2 = {1, 2, . . . ,m2}. Let a(1)

i j denote the payoff value φ1(i, j), when player 1

choses strategy i and player 2 selects strategy j . Let a(2)
i j denote the corresponding

payoff value φ2(i, j) of player 2.
If there is no equilibrium, then there is no clear strategy selections of the players,

so they change their strategies game by game. If there is a deterministic rule of
strategy selection of a player, then the other player will successfully predict his
strategy choices so appropriate answers can be found in advance. Therefore random
strategy selection is the logical solution for this problem. In this case each player
defines a discrete probability distribution sk = (

x (k)
1 , . . . , x (k)

mk

)T
on the strategy set

and at each realization of the game a random strategy is selected according to this
distribution. By assuming that the game is repeated many times, the average payoff
of player k becomes

m1∑

i=1

m2∑

j=1

a(k)
i j x

(1)
i x (2)

j = sT1 A
(k)s2

where
A(k) = (

a(k)
i j

)
i, j .

This extended game with strategy sets

Sk =
{
sk = (

x (k)
1 , . . . , x (k)

mk

)|0 � x (k)
i � 1,

mk∑

i=1

x (k)
i = 1

}
(5.5)
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and payoff functions
φk(s1, s2) = sT1 A

(k)s2 (5.6)

is called the mixed extension of a two-person finite game, or simply bimatrix game,
since it is characterized by two matrices A(1) and A(2). The elements of Sk are called
pure strategies and those of Sk are called mixed strategies.

It is easy to see that all conditions of the Nikaido-Isoda theorem are satisfied, so
bimatrix games always have at least one equilibrium.

Example 5.6 Consider a simple examplewhen the players have only twopure strate-
gies and the matrices are:

A(1) =
(
1 2
2 0

)
and A(2) =

(
2 1
4 5

)
.

Notice that there is no strategy pair (i, j) such that a(1)
i j is the largest element of

its column in A(1) and a(2)
i j is the largest element of its row in A(2). So there is no

pure strategy equilibrium. By finding the best responses of the players we will be
able to find the mixed strategy equilibrium of the game. For the sake of notational
simplicity let s1 = (x, 1 − x)T and s2 = (y, 1 − y)T with 0 � x, y � 1. Then

φ1 = (x, 1 − x)

(
1 2
2 0

) (
y

1 − y

)
= (

x + 2(1 − x), 2x
) (

y
1 − y

)

= (2 − x, 2x)

(
y

1 − y

)
= (2 − x)y + 2x(1 − y) = 2x + 2y − 3xy

= x(2 − 3y) + 2y.

The best response of player 1 maximizes this linear function in x ,

R1(y) =

⎧
⎪⎨

⎪⎩

1 if y < 2
3

0 if y > 2
3

[0, 1] if y = 2
3

since if the multiplier of x is positive, then the largest x value is the maximizer, if
the multiplier is negative, then the smallest x value is selected, and if the multiplier
is zero, then φ1 does not depend on x , so the entire interval [0, 1] for x has to be
considered as the best response. Similarly

φ2 = (x, 1 − x)

(
2 1
4 5

) (
y

1 − y

)
= (

2x + 4(1 − x), x + 5(1 − x)
) (

y
1 − y

)

= (4 − 2x, 5 − 4x)

(
y

1 − y

)
= (4 − 2x)y + (5 − 4x)(1 − y) = −4x − y + 2xy + 5

= y(2x − 1) − 4x + 5
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so the best response of player 2 is the following:

R2(x) =

⎧
⎪⎨

⎪⎩

1 if x > 1
2

0 if x < 1
2

[0, 1] if x = 1
2 .

The best responses are shown in Fig. 5.3, the only equilibrium is x = 1
2 , y = 2

3 .
This result shows that the probability distributions of the players are

s1 = ( 12 ,
1
2 )

T and s2 = ( 23 ,
1
3 )

T .

So at the equilibrium player 1 selects the strategies with equal, 1
2 − 1

2 probability
while player 2 selects strategy 1 twice as often than strategy 2. �

Fig. 5.3 Best responses in Example 5.6

If the two-person finite game is zero sum, then its extension is called matrix
game, since A(2) = −A(1), so the game is characterized with a single matrix A(1).
The payoff functions are

φ1 = sT1 A
(1)s2 and φ2 = −φ1.

All matrix games have at least one equilibrium.

Example 5.7 Consider again a simple example with two pure strategies of the play-
ers, when

A(1) =
(
2 1
0 2

)
.

Notice that there is no matrix element which is largest in its column and smallest
in its row. So there is no pure strategy equilibrium. As before let the random strategies
of the players be s1 = (x, 1 − x)T and s2 = (y, 1 − y)T with 0 � x, y � 1. Then
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φ1 = (x, 1 − x)

(
2 1
0 2

) (
y

1 − y

)
= (

2x, x + 2(1 − x)
) (

y
1 − y

)
= (2x, 2 − x)

(
y

1 − y

)

= 2xy + (2 − x)(1 − y) = −x − 2y + 3xy + 2 =
= x(3y − 1) − 2y + 2,

so the best response of player 1 is the following:

R1(y) =

⎧
⎪⎨

⎪⎩

1 if y > 1
3

0 if y < 1
3

[0, 1] if y = 1
3 .

Since the payoff of player 2 is

φ2 = −φ1 = x + 2y − 3xy − 2 = y(2 − 3x) + x − 2,

his best response is as follows:

R2(x) =

⎧
⎪⎨

⎪⎩

1 if x < 2
3

0 if x > 2
3

[0, 1] if x = 2
3 .

Figure5.4 shows these best responses, and clearly x = 2
3 and y = 1

3 is the only
equilibrium. So themixed strategies of the players are s1 = ( 23 ,

1
3 )

T and s2 = ( 13 ,
2
3 )

T ,
which means that at the mixed equilibrium player 1 selects strategy 1 twice as often
than strategy 2, and player 2 selects strategy 2 twice as often than strategy 1. �

Fig. 5.4 Best responses in Example 5.7
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In the above examples the equilibriumwas unique. This is not necessarily the case
in general. It is sufficient to consider matrices A(1) and A(2) with identical elements.
In this case with the notation of A(1) = (a(1))i j , A

(2) = (a(2))i, j the payoff functions
are constants:

φk = sT1 A
(k)s2 = a(k)sT1

⎛

⎜
⎝

1 . . . 1
...

...

1 . . . 1

⎞

⎟
⎠ s2 = a(k)

m1∑

i=1

m2∑

j=1

x (1)
i x (2)

j

= a(k)
( m1∑

i=1

x (1)
i

)( m2∑

j=1

x (2)
j

)
= a(k). (5.7)

So all strategy pairs (s1, s2) provide equilibria.

5.3 Mixed Extensions of N-Person Finite Games

Consider now an N -person finite game, where the strategy set of player k(k =
1, 2, . . . , N ) is Sk = {1, 2, . . . ,mk}, and his payoff function is denoted as

φk(i1, i2, . . . , iN ) = a(k)
i1i2...iN

.

The mixed extension of this game can be defined similarly to bimatrix and matrix
games. The mixed strategies of each player k are the probability vectors

sk = (
x (k)
1 , x (k)

2 , . . . , x (k)
mk

)T

such that 0 � x (k)
i � 1 for all i and

∑mk
i=1 x

(k)
i = 1. So the strategy sets are defined

again as it was given in (5.5) but the payoff of player k is more complicated:

φk =
m1∑

i1=1

m2∑

i2=1

. . .

mN∑

iN=1

a(k)
i1i2...iN

x (1)
i1

x (2)
i2

. . . x (N )
iN

. (5.8)

Notice that the strategy sets are nonempty, convex, closed and bounded in themk-
dimensional space,φk is continuous in the strategy vectors and linear in sk , so concave
as well. So all conditions of the Nikaido-Isoda theorem hold implying the existence
of at least one equilibrium. The uniqueness of the equilibrium is not guaranteed in
general, since we have constant payoff functions if the elements a(k)

i1i2...iN
depend on

only k, and independent of the strategy selections i1, i2, . . . , iN . In this case we have

φk = a(k)
( m1∑

i1=1

x (1)
i1

)( m2∑

i2=1

x (2)
i2

)
. . .

( mN∑

iN=1

x (N )
iN

)
= a(k),

so any strategy N -tuple
(
s1, s2, . . . , sN

)
provides equilibrium.
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5.4 Multiproduct Oligopolies

Consider an industry of N firms, each of them producesM items or offersM different
services to a homogeneous market. The output of firm k is a production vector
xk = (

x (1)
k , x (2)

k , . . . , x (M)
k

)T
where x (m)

k denotes the production level of product m

by firm k. The total production of the industry is s = ∑N
k=1 xk as an M-element

vector. Let p(m)(s) be the unit price of item m, and let p = (
p(1), . . . , p(M)

)T
be the

price vector. IfCk(xk) is the cost function of firm k, then its profit is given as follows:

φk(x1, . . . , x N ) =
M∑

m=1

x (m)
k p(m)(s) − Ck(xk) = xTk p(s) − Ck(xk). (5.9)

Assume that the following conditions hold;

(a) The strategy set Sk of each firm is a nonempty, convex, closed and bounded set
in RM+ = {x |x � 0, x ∈ R

M};
(b) Functions p and Ck for all k are continuous;

(c) xTk p
(∑N

l=1 xl

)
is concave in xk;

(d) Ck(xk) is convex in xk .

Under these assumptions the conditions of the Nikaido-Isoda theorem are satis-
fied, so the multiproduct oligopoly has at least one equilibrium.

Conditions (a), (b) and (d) can be verified easily, however assumption (c) needs
further investigation. A simple sufficient condition is given by the following result
(Okuguchi & Szidarovszky, okuszi99):

Lemma 5.1 Let f : D �→ R
M with D ⊆ R

M+ being a convex set, − f is monotonic
and all components of f are concave. Then g(x) = xT f (x) is concave on D.

Proof Let α, β � 0 such that α + β = 1, and x, y ∈ D. Then

(x − y)T
(
f (x) − f (y)

)
� 0.

By multiplying both sides by αβ we have

αβxT f (x) + αβ yT f (y) � αβ yT f (x) + αβxT f (y).

Since αβ = α(1 − α) = α − α2 and αβ = (1 − β)β = β − β2 we get

(αx + β y)T
(
α f (x) + β f (y)

)
� αxT f (x) + β yT f (y)

implying that
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g(αx + β y) = (αx + β y)T f (αx + β y) � (αx + β y)T
(
α f (x) + β f (y)

)
�

αxT f (x) + β yT f (y) = αg(x) + βg(y),

where we used the concavity of the components of f . This last inequality shows that
g(x) is concave. �

Corollary Assume that in a multiproduct oligopoly-p is monotonic and all com-
ponents of p are concave, furthermore conditions (a), (b) and (d) hold, then φk is
concave in xk, so there is at least one equilibrium.

Consider finally the single product case, when xk = xk , a scalar, s = ∑N
k=1 xk,

P(s) = p(s) where p is a single-variable real-valued function. The strategy set of
each player is a closed interval [0, Lk], where Lk is the capacity limit of firm k. The
profit of firm k is given as

φk = xk p(s) − Ck(xk).

We can simplify conditions (a)-(d) in this special case. Observe first that Sk =
[0, Lk] satisfies condition (a). By assuming the continuity of functions p and Ck ,
condition (b) is satisfied. If we assume that the cost functions are convex, then (d)
also holds. Condition (c) can be examined by assuming that function p is twice
differentiable. In this case

∂

(
xk p

( ∑N
l=1 xl

))

∂xk
= xk p

′
( N∑

l=1

xl
)

+ p
( N∑

l=1

xl
)

and

∂2

(
xk p

( ∑N
l=1 xl

))

∂2xk
= 2p′

( N∑

l=1

xl
)

+ xk p
′′
( N∑

l=1

xl
)
.

So by assuming that 2p′(s) + xk p′′(s) � 0, condition (c) also holds.
Making the natural assumption p′(s) < 0 (since price has to be a decreasing

function of the supply), the above existence conditions

(A) C ′′
k (xk) � 0

(B) 2p′(s) + xk p
′′(s) � 0

are slightly different than conditions (a)–(c) assumed in Example 3.14, since (a) and
(b) imply (B), (a) and (A) imply (c).



Chapter 6
Computation of Equilibria

In the previous chapter conditions were given for the existence of equilibria in N -
person games. The Nikaido-Isoda theorem was based on the Kakutani fixed point
theorem, which guarantees the existence of at least one fixed point without providing
computational method for finding the fixed points. In this chapter a general method
will be introduced and applied to some special game classes.

6.1 Application of the Kuhn-Tucker Conditions

Assume that the strategy set of each player is defined by certain inequalities:

Sk = {xk |gk(xk) � 0} (6.1)

where functions g
k

: Dk �→ R
mk are continuously differentiable where Dk is an open

set in finite dimensional Euclidean space.Assume in addition that all payoff functions
φk are also continuously differentiable in xk with any selection of the strategies
xl(l �= k) of the other players. If (x∗

1, . . . , x
∗
N ) is an equilibrium, then x∗

k is a solution
of the optimization problem

maximize xkφk(x
∗
1, . . . , x

∗
k−1, xk, x

∗
k+1, . . . , x

∗
N )

subject to g
k
(xk) � 0.

(6.2)

Assume in addition that the Kuhn-Tucker regularity condition holds, then the
Kuhn-Tucker necessary conditions imply the existence of an mk-dimensional vector
uk such that
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uk � 0

g
k
(xk) � 0

�kφk(x1, . . . , x N ) + uT
k �k gk(xk) = 0T

uT
k gk(xk) = 0 (6.3)

where �kφk is the gradient vector of φk with respect to xk as a row vector, and �kgk
is the Jacobian matrix of g

k
(xk). If for all k, φk and g

k
are both concave in xk , then

conditions (6.3) are also sufficient for optimality.
By constructing conditions (6.3) for all players a system of (usually nonlinear)

equations and inequalities is obtained, the equilibria have to be among the solutions
of the system.

Example 6.1 Consider a duopoly (N = 2)with strategy sets S1 = S2 = [0, 10] and
price function p(x + y) = 20 − (x + y) where x and y are the production levels of
the firms. Then

φ1(x, y) = x(20 − x − y) − x,

and

φ2(x, y) = y(20 − x − y) − y

where we assume that the cost functions are C1(x) = x and C2(y) = y. In this case
the optimum problem (6.2) for the two players have the form

maximizex x(20 − x − y) − x = 19x − x2 − xy

subject to 0 � x � 10 (6.4)

and

maximizey y(20 − x − y) − y = 19y − y2 − xy

subject to 0 � y � 10.
(6.5)

In order to rewrite these problems into the form (C3)(seeAppendixC), the constraints
have to be reformulated as

x � 0

10 − x � 0

and

y � 0

10 − y � 0.
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Therefore for both players the uk vectors are two dimensional:

u1 =
(
u1
v1

)
and u2 =

(
u2
v2

)
.

For player 1, conditions (6.3) have the following form:

u1, v1 � 0

x � 0, 10 − x � 0

19 − 2x − y + (u1, v1)

(
1

−1

)
= 0

u1x + v1(10 − x) = 0.

Notice that both terms of the last equation are nonnegative, so their sum is zero if and
only if both terms are equal to zero. Hence the Kuhn-Tucker conditions for player 1
can be reformulated as follows:

u1, v1 � 0

x � 0, 10 − x � 0

19 − 2x − y + u1 − v1 = 0

u1x = v1(10 − x) = 0.

(6.6)

For player 2 we get similarly the conditions

u2, v2 � 0

y � 0, 10 − y � 0

19 − 2y − x + u2 − v2 = 0

u2y = v2(10 − y) = 0.

(6.7)

System (6.6)–(6.7) has six unknowns, x, y, u1, v1, u2, v2.
In solving the system we consider three cases: x = 0, x = 10 and 0 < x < 10.
If x = 0, then the last condition of (6.6) implies that v1 = 0, so from the third

condition of (6.6) we see that 19 − y + u1 = 0 implying that y = 19 + u1, which
contradicts the assumption that y � 10.

If x = 10, then u1 = 0 implying that−1 − y − v1 = 0, so y = −1 − v1 < 0 con-
tradicting the assumption that y � 0.

If 0 < x < 10, then u1 = v1 = 0, so 19 − 2x − y = 0.
By repeating the same argument for system (6.7) we get that 19 − 2y − x = 0.

Hence we have to solve equations
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19 − 2x − y = 0

19 − x − 2y = 0

giving the solution x = y = 19
3 . �

6.2 Reduction to an Optimization Problem

TheKuhn-Tucker conditions (6.3) for all players can be reformulated as the following
optimization problem:

minimize
N∑

k=1

uT
k gk(xk)

subject to
uk � 0,

g
k
(xk) � 0, and

�kφk(x1, . . . , x N ) + uT
k �k gk(xk) = 0T .

⎫⎬
⎭ (k = 1, 2, . . . , N )

(6.8)

The last conditions of (6.3) are satisfied if and only if the objective function of
(6.8) is zero. The first two constraints of (6.8) imply that the objective function is
always nonnegative, so we have two possibilities. If the optimal objective function
value is zero, then all optimal solutions satisfy all conditions of (6.3), so they solve the
Kuhn-Tucker conditions, and the equilibria are among the solutions. If the objective
function at the optimum is positive, then the Kuhn-Tucker conditions do not have a
solution implying that no equilibrium exists.

Example 6.2 In the case of the previous example problem (6.8) has the following
form:

minimize
{
u1x + v1(10 − x) + u2y + v2(10 − y)

}
subject to u1, v1, u2, v2 � 0

0 � x, y � 10

19 − 2x − y + u1 − v1 = 0

19 − x − 2y + u2 − v2 = 0.

(6.9)

It is easy to see that u1 = v1 = u2 = v2 = 0 and x = y = 19
3 is feasible and pro-

vides zero objective function value, so it is optimal. �

As an additional illustration consider the following example.
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Example 6.3 Let N = 2, S1 = S2 = [0,∞) be the number of players and the strat-
egy sets. Assume that the payoff functions are

φ1(x, y) = x + y − (x + y)2 = x + y − x2 − 2xy − y2

and

φ2(x, y) = x + y − 2(x + y)2 = x + y − 2x2 − 4xy − 2y2.

Since the strategy sets are characterized by single inequalities x � 0 and y � 0,
the vectors u1 and u2 are one-dimensional. The Kuhn-Tucker conditions (6.3) for
the two players are as follows:

x, u1 � 0 y, u2 � 0

1 − 2x − 2y + u1 = 0 and 1 − 4x − 4y + u2 = 0

u1x = 0 u2y = 0.

In solving these equations and inequalitieswewill consider four cases: x = 0, y =
0; x = 0, y > 0; x > 0, y = 0 and x > 0, y > 0. If x = y = 0, then from the sec-
ond conditions 1 + u1 = 1 + u2 = 0, which cannot occur, since u1 and u2 are non-
negative. If x = 0 and y > 0, then u2 = 0 and 1 − 4y = 0. So y = 1

4 and from the
second condition for player 1 we conclude that 1 − 1

2 + u1 = 0, which is again a
contradiction. If x > 0 and y = 0, then similarly u1 = 0 and 1 − 2x = 0, so x = 1

2
and then the second condition for player 2 implies that 1 − 2 + u2 = 0. Therefore
u2 = 1, and the solution is u1 = 0, u2 = 1, x = 1

2 and y = 0. If x and y are positive,
then u1 = u2 = 0 implying that 1 − 2x − 2y = 1 − 4x − 4y = 0, which is again a
contradiction.

The optimum problem (6.8) has now the following form:

minimize u1x + u2y

subject to u1, u2, x, y � 0

1 − 2x − 2y + u1 = 0

1 − 4x − 4y + u2 = 0.

From the last two constraints we have

u1 = 2x + 2y − 1 � 0 and u2 = 4x + 4y − 1 � 0

implying that

x + y � 1

2
.
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Substituting the above expressions for u1 and u2 into the objective function, the
problem becomes

minimize x(2x + 2y − 1) + y(4x + 4y − 1) = 2x2 + 4y2 + 6xy − x − y

subject to x, y � 0

x + y � 1

2
.

At any equilibrium the objective function has to be zero, so

0 = 2x2 + 4y2 + 6xy − x − y = (x + y)(2x + 4y − 1),

that is, 2x + 4y − 1 = 0 or y = − x
2 + 1

4 . Then

x + y = x − x

2
+ 1

4
= x

2
+ 1

4
≥ 1

2
,

so x � 1
2 . Furthermore y = − x

2 + 1
4 ≥ 0, implying that x � 1

2 . Hence x = 1
2 , y = 0

is the solution. �

6.3 Solution of Bimatrix Games

Bimatrix games are characterized by two matrices A(1) and A(2) of the common size
m1 × m2. The strategy sets of the two players are

S1 = {s1|s1 ∈ R
m1 , s1 � 0, 1T1 s1 = 1}

and
S2 = {s2|s2 ∈ R

m2 , s2 � 0, 1T2 s2 = 1}

where 1Tk is the row vector with mk unit elements. Notice that with any vector s, 1T s
is the sum of its elements. The payoff functions are as follows:

φ1 = sT1 A
(1)s2 and φ2 = sT1 A

(2)s2.

In order to construct the Kuhn-Tucker conditions we have to rewrite the constraints
of S1 and S2 in the following way:
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sk � 0

1Tk sk − 1 � 0

−1Tk sk + 1 � 0

for k = 1, 2. So in the notation of (6.1),

g
k
(sk) =

⎛
⎝ sk

1Tk sk − 1
−1Tk sk + 1

⎞
⎠ ,

with Jacobian matrix

�kgk(sk) =
⎛
⎝ I k

1Tk
−1Tk

⎞
⎠ ,

where I k is the mk × mk identity matrix, and 1k is the mk-element vector with unit
components. The uk vector also can be decomposed accordingly as

uk =
⎛
⎝ vk

v
(mk+1)
k

v
(mk+2)
k

⎞
⎠ .

We can now find the special form of the optimization problem (6.8). The objective
function can be written as

2∑
k=1

(
vTk sk + v

(mk+1)
k (1Tk sk − 1) − v

(mk+2)
k (1Tk sk − 1)

)
=

2∑
k=1

(
vTk sk − αk(1

T
k sk − 1)

)

(6.10)
with αk = v

(mk+2)
k − v

(mk+1)
k without any sign constraint. The constraints of (6.8)

imply that

v1 � 0, v2 � 0

s1 � 0, s2 � 0

sT2 A
(1)T + vT

1 + (
v

(m1+1)
1 − v

(m1+2)
1

)
1T1 = 0T

and

sT1 A
(2) + vT

2 + (
v

(m2+1)
2 − v

(m2+2)
2

)
1T2 = 0T .
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From the last two equations we have

vT
1 = α11

T
1 − sT2 A

(1)T , vT
2 = α21

T
2 − sT1 A

(2)

so the objective function becomes

(
α11

T
1 − sT2 A

(1)T
)
s1 + (

α21
T
2 − sT1 A

(2)
)
s2 − α1(1

T
1 s1 − 1) − α2(1

T
2 s2 − 1)

= −sT1 A
(1)s2 − sT1 A

(2)s2 + α1 + α2

since 1Tk sk = 1 for k = 1, 2. By using the nonnegativity of vT
1 and vT

2 , the optimum
problem can be rewritten in a quadratic programming form

maximize sT1
(
A(1) + A(2))s2 − α1 − α2

subject to s1 � 0, s2 � 0

1T1 s1 = 1, 1T2 s2 = 1

A(1)s2 � α111
A(2)T s1 � α212.

(6.11)

A strategy pair (s∗
1, s

∗
2) is an equilibrium if and only if it is an optimal solution

of problem (6.11) with some values of (α1, α2). Equivalently, a strategy pair (s∗
1 , s

∗
2 )

is an equilibrium if with some α1, α2 it satisfies all constraints of (6.11) and the
corresponding objective function value is zero (Mangasarian and Stone, 1964).

Example 6.4 Consider the bimatrix game with matrices

A(1) =
(

2 −1
−1 1

)
and A(2) =

(
1 −1

−1 2

)
.

Let s1 = (
x (1)
1 , x (1)

2

)T
, s2 = (

x (2)
1 , x (2)

2

)T
. Since

A(1) + A(2) =
(

3 −2
−2 3

)
,

problem (6.11) has the special form

maximize
(
x (1)
1 , x (1)

2

) (
3 −2

−2 3

) (
x (2)
1

x (2)
2

)
− α1 − α2

subject to x (1)
1 , x (1)

2 , x (2)
1 , x (2)

2 � 0

x (1)
1 + x (1)

2 = x (2)
1 + x (2)

2 = 1(
2 −1

−1 1

)(
x (2)
1

x (2)
2

)
�

(
α1

α1

)
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(
1 −1

−1 2

)(
x (1)
1

x (1)
2

)
�

(
α2

α2

)
.

A simple computer program shows that there are three optimal solutions:

s1 = (1, 0)T , s2 = (1, 0)T , α1 = 2, α2 = 1,

s1 = (0, 1)T , s2 = (0, 1)T , α1 = 1, α2 = 2,

and

s1 = (
3

5
,
2

5
)T , s2 = (

2

5
,
3

5
)T , α1 = 1

5
, α2 = 1

5
.

We can easily obtain the same solutions by using the best responses of the players.
For the simple notation let

s1 =
(

x
1 − x

)
and s2 =

(
y

1 − y

)
,

then the payoff functions are

φ1 = (x, 1 − x)

(
2 −1

−1 1

) (
y

1 − y

)
= 2xy − x(1 − y) − y(1 − x) + (1 − x)(1 − y) =

= 5xy − 2x − 2y + 1 = x(5y − 2) − 2y + 1

and

φ2 = (x, 1 − x)

(
1 −1

−1 2

)(
y

1 − y

)
= xy − (1 − x)y − x(1 − y) + 2(1 − x)(1 − y) =

= 5xy − 3y − 3x + 2 = y(5x − 3) − 3x + 2

with best responses

R1(y) =

⎧⎪⎨
⎪⎩
1 if y > 2

5

0 if y < 2
5

[0, 1] if y = 2
5

and

R2(x) =

⎧⎪⎨
⎪⎩
1 if x > 3

5

0 if x < 3
5

[0, 1] if x = 3
5 .

These best responses are shown in Figure 6.1, from which we see the existence
of three equilibria: x = y = 0, x = y = 1 and x = 3

5 , y = 2
5 . So the equilibrium

strategies are
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s1 = (0, 1)T ,s2 = (0, 1)T ;
s1 = (1, 0)T ,s2 = (1, 0)T

s1 = (
3

5
,
2

5
)T ,s2 = (

2

5
,
3

5
)T .

which is the same result as the one obtained by the optimum model (Fig. 6.1). �

Fig. 6.1 Best responses in Example 6.4

6.4 Solution of Matrix Games

Matrix games are the mixed extensions of zero-sum two-person finite games. By
using the notation of the previous section, A(1) + A(2) = 0, the quadratic program-
ming problem becomes linear:

minimize α1 + α2

subject to s1 � 0, s2 � 0

1T1 s1 = 1, 1T2 s2 = 1

A(1)s2 � α111
−A(1)T s1 � α212.

(6.12)

Notice that variable pairs α1, s2 and α2, s1 are independent, so we can rewrite
problem (6.12) as a pair of linear programming problems of much lower sizes than
(6.12):
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minimize α1 and minimize α2

subject to 1T2 s2 = 1 subject to 1T1 s1 = 1

A(1)s2 � α111 A(1)T s1 � −α212 (6.13)

s2 � 0 s1 � 0.

A strategy pair (s∗
1, s

∗
2) is an equilibrium of the matrix game if and only if

(a) They are optimal solutions of problems (6.13) with some values of α1 and α2;
or
(b) They are feasible solutions of problems (6.13) with some values of α1 and α2

such that α1 + α2 = 0.
or
(c) They are feasible solutions of the system

A(1)s2 � α11, A(1)T s1 � α12
1T2 s2 = 1 1T1 s1 = 1 (6.14)

s2 � 0 s1 � 0

with some value of α.
The independence of the two problems of (6.13) implies that if (s∗

1, s
∗
2) and

(s∗∗
1 , s∗∗

2 ) are equilibria, then (s∗
1, s

∗∗
2 ) and (s∗∗

1 , s∗
2) are also equilibria.

Example 6.5 Consider a matrix game with matrix

A(1) =
⎛
⎝ 2 1 0

2 0 3
−1 3 3

⎞
⎠ .

By using the convenient notation

s1 = (
x (1)
1 , x (1)

2 , x (1)
3

)T
and s2 = (

x (2)
1 , x (2)

2 , x (2)
3

)T
problem (6.13) can be rewritten as follows:

minimize α1 minimize α2

subject to x (2)
1 + x (2)

2 + x (2)
3 = 1 subject to x (1)

1 + x (1)
2 + x (1)

3 = 1

2x (2)
1 + x (2)

2 − α1 � 0 and 2x (1)
1 + 2x (1)

2 − x (1)
3 + α2 � 0

2x (2)
1 + 3x (2)

3 − α1 � 0 x (1)
1 + 3x (1)

3 + α2 � 0

−x (2)
1 + 3x (2)

2 + 3x (2)
3 − α1 � 0 3x (1)

2 + 3x (1)
3 + α2 � 0

x (2)
1 , x (2)

2 , x (2)
3 � 0 x (1)

1 , x (1)
2 , x (1)

3 � 0.

A simple linear program solver gives the solution:
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s1 = (4
7
,
4

21
,
5

21

)T
,α2 = −9

7

s2 = (3
7
,
3

7
,
1

7

)T
,α1 = 9

7
.

Notice that α1 + α2 = 0, as it should. �

In small dimensional cases the linear programming problems can be solved very
easily as it is illustrated in the following example.

Example 6.6 Consider now a simple matrix game with matrix

A(1) =
(
2 1
0 2

)

which was the subject of the earlier Example 5.7. By introducing the notation

s1 =
(

x
1 − x

)
and s2 =

(
y

1 − y

)

the linear programming problem pair (6.13) has now the special form:

minimize α1 and minimize α2

subject to 0 � y � 1 subject to 0 � x � 1

2y + (1 − y) � α1 2x � −α2 (6.15)

2(1 − y) � α1 x + 2(1 − x) � −α2.

The constraints can be rewritten as

−y + α1 � 1 and 2x + α2 � 0

2y + α1 � 2 −x + α2 � −2

0 � y � 1 0 � x � 1.

The feasible sets are shown in Figs. 6.2A, B.
In Fig. 6.2A the smallestα1 value occurs at the intersection of the lines α1 = y + 1

and α1 = 2 − 2y giving the solution y = 1
3 , α1 = 4

3 . In Fig. 6.2B the solution is the
intersection of lines α2 = x − 2 and α2 = −2x with the solution x = 2

3 , α2 = − 4
3 .

So the mixed strategy equilibrium is

s1 = (2
3
,
1

3

)T
and s2 = (1

3
,
2

3

)T
.

�
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Fig. 6.2 Feasible sets in problems (6.15)

Finally we mention that the optimal value of α1 in (6.13) has a special meaning.
Notice that at any equilibrium (s∗

1, s
∗
2),

s∗T
1 A(1)s∗

2 � s∗T
1 (α111) = α1(s

∗T
1 11) = α1

and

s∗T
1 A(1)s∗

2 = s∗T
2 A(1)T s∗

1 � s∗T
2 (−α212) = s∗T

2 (α112)

= α1(s
∗T
2 12) = α1

implying that at any equilibrium the payoff of player 1 equals α1. This value is
sometimes called the value of the matrix game.

6.5 Solution of Oligopolies

Consider now an industry of N firms producing identical product or offering the
same service to a homogeneous market. Let xk ∈ [0, Lk] be the production level of
firm k, where Lk is its capacity limit. The profit of firm k is given as



86 6 Computation of Equilibria

φk(x1, . . . , xN ) = xk p
( N∑

l=1

xl
)

− Ck(xk) (6.16)

where p is the price function and Ck is the cost function of firm k. The strategy set
of each firm is characterized by two inequalities

xk �0

Lk − xk �0,

so each firm has a two-dimensional vector uk = (u(1)
k , u(2)

k )T , by keeping the notation
of (6.3). In addition

g
k
(xk) =

(
xk

Lk − xk

)

with Jacobian matrix

�kgk(xk) =
(

1
−1

)
.

Notice also that

�kφk(x1, . . . , x N ) = p
( N∑

l=1

xl
)

+ xk p
′
( N∑

l=1

xl
)

− C
′
k(xk),

so the optimization problem (6.8) can be specialized as follows:

minimize
N∑

k=1

(
u(1)
k xk + u(2)

k (Lk − xk)
)

subject to u(1)
k , u(2)

k ≥ 0
0 ≤ xk ≤ Lk

p

(
N∑
l=1

xl

)
+ xk p′

(
N∑
l=1

xl

)
− C ′

k (xk) +
(
u(1)
k , u2k

) (
1

−1

)
= 0

⎫⎪⎪⎬
⎪⎪⎭

(1 ≤ k ≤ N )

(6.17)
By introducing the new variables αk = u(1)

k − u(2)
k and βk = u(2)

k and by noticing
that from the last constraint we have

αk = −
[
p
( N∑

l=1

xl
)

+ xk p
′
( N∑

l=1

xl
)

− C
′
k(xk)

]
,

problem (6.17) can be simplified in the following way:
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Fig. 6.3 Price function in Example 6.7

minimize
N∑

k=1

(
− xk

[
p
( N∑

l=1

xl
)

+ xk p
′
( N∑

l=1

xl
)

− C
′
k(xk)

]
+ βk Lk

)
(6.18)

subject to βk � 0 [(1 � k � N ).]
βk −

[
p
( ∑N

l=1 xl
)

+ xk p′
( ∑N

l=1 xl
)

− C
′
k(xk)

]
� 0

0 � xk � Lk .

Hence the solutions of this nonlinear optimization problem provide the equilibria.

Example 6.7 Consider now a three-firm oligopoly with N = 3, capacity limits
L1 = L2 = L3 = 1, price function p(s) = 2 − 2s − s2(s = x1 + x2 + x3) and cost
functions Ck(xk) = kx3k + xk . The price function is shown in Fig. 6.3. In order to
avoid negative price we have to define the price as zero for s >

√
3 − 1. At any

equilibrium s ≤ √
3 − 1, otherwise at least one firm could decrease its output level

so that s would still be greater than
√
3 − 1 with decreased cost. So its payoff would

increase.
In this case problem (6.18) becomes the following:

minimize
3∑

k=1

(
− xk(2 − 2 s − s2 − 2xk − 2xks − 3kx2k − 1) + βk

)

subject to 0 � xk � 1
βk � 0

βk − [2 − 2 s − s2 − 2xk − 2xks − 3kx2k − 1] � 0

⎫⎬
⎭ (1 � k � 3).

x1 + x2 + x3 = s.

(6.19)

A computer program gave the optimal solution:

x∗
1 = 0.1077, x∗

2 = 0.0986 and x∗
3 = 0.0919.

�



Chapter 7
Special Matrix Games

In this chapter some special classes of matrix games will be discussed.

7.1 Matrix with Identical Elements

Assume that thematrix game is definedwith anm1 × m2 matrix such that all elements
of A(1) are equal to a given constant α. That is,

A(1) =
⎛
⎜⎝

α · · · α
...

. . .
...

α · · · α

⎞
⎟⎠ = α111

T
2 ,

where 11 ∈ R
m1 , 12 ∈ R

m2 and all elements of these vectors equal unity, so the payoff
of player 1 equals

φ1 = sT1 α111
T
2 s2 = α(sT1 11)(1

T
2 s2) = α.

Then φ2 = −α, that is, the payoff functions do not depend on the strategy
selection, therefore any strategy pair gives equilibrium.
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7.2 The Case of Diagonal Matrix

Assume now that the matrix game is defined by the diagonal matrix

A(1) =

⎛
⎜⎜⎜⎝

a1 ©
a2

. . .

© an

⎞
⎟⎟⎟⎠ .

Let sk = (
x (k)
1 , . . . , x (k)

n

)T
for k = 1, 2, then conditions (6.14) can be written as

follows:
akx

(2)
k � α

akx
(1)
k � α

x (1)
k , x (2)

k � 0
n∑

k=1

x (1)
k =

n∑
k=1

x (2)
k = 1.

(7.1)

We will now consider three cases.
If ak > 0 for all k, then for at least one k, akx

(2)
k > 0, so α > 0. Therefore

1 =
n∑

k=1

x (2)
k �

n∑
k=1

α

ak
�

n∑
k=1

x (1)
k = 1

where the inequality also holds for all terms k. This relation holds if and only if
x (1)
k = x (2)

k = α
ak
, however

1 =
n∑

l=1

x (1)
l = α

n∑
l=1

1

al
,

so the only equilibrium is

x (1)
k = x (2)

k = α

ak
with α = 1∑n

l=1
1
al

.

If ak < 0 for all k, then for at least one k, akx
(1)
k < 0, so α < 0. Then from (7.1),

(−ak)x
(2)
k � −α

(−ak)x
(1)
k � −α,

furthermore
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1 =
n∑

k=1

x (2)
k �

n∑
k=1

−α

−ak
�

n∑
k=1

x (1)
k = 1,

so for all k, x (1)
k = x (2)

k = α
ak
. However

1 =
n∑

l=1

x (1)
l = α

n∑
l=1

1

al
,

the only equilibrium is

x (1)
k = x (2)

k = α

ak
with α = 1∑n

l=1
1
al

.

If ai � 0 and a j � 0 with some i and j , then

α � ai x
(2)
i � 0 � a j x

(1)
j � α

implying that α = 0, so for all k conditions (7.1) can be rewritten as

akx
(2)
k � 0 � akx

(1)
k .

Define

uk

{
= 0 if ak > 0

� 0 if ak � 0

and

vk

{
= 0 if ak < 0

� 0 if ak � 0

arbitrarily and let

u =
n∑

k=1

uk and v =
n∑

k=1

vk .

Then any strategy pair of the form

s1 = 1

v
(v1, . . . , vn)

T and s2 = 1

u
(u1, . . . , un)

T

provides equilibrium.
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7.3 Symmetric Matrix Games

Here we assume that A(1) is an n × n skew-symmetric matrix, that is,

A(1)T = −A(1).

In this case problems (6.13) have the following form:

minimize α1 and minimize α2

subject to 1T2 s2 = 1 subject to 1T1 s1 = 1

A(1)s2 � α111 −A(1)
1 s1 � −α212

s2 � 0 s1 � 0

showing that the two linear programming problems are identical. So the optimal
solutions and the optimal objective function values are equal. Since α1 + α2 = 0 at
the optimum, α1 = α2 = 0. Let X∗ denote the set of optimal solutions, then a strategy
pair (s∗

1 , s
∗
2 ) is an equilibrium if and only if s∗

1 , s
∗
2 ∈ X∗. It is clear, that

X∗ = {s ∈ R
n|s � 0, 1T s = 1, A(1)s � 0}. (7.2)

Example 7.1 Assume that

A(1) =
⎛
⎝
1 0 −1
0 2 2
1 −2 1

⎞
⎠ ,

then X∗ is the set of all three-element vectors such that

s1, s2, s3 � 0

s1 + s2 + s3 = 1

s1 − s3 � 0

2s2 + 2s3 � 0

s1 − 2s2 + s3 � 0.

�



7.4 Relation Between Matrix Games and Linear Programming 93

7.4 Relation Between Matrix Games and Linear
Programming

Consider a primal-dual pair of a linear programming problem:

(P) maximize cT x (D) minimize bT y

subject to Ax � b subject to AT y � c

x � 0 y � 0.

Construct a skew-symmetric matrix

P =
⎛
⎝

0 A −b
−AT 0 c
bT −cT 0

⎞
⎠

which defines a symmetric matrix game with A(1) = P , which will be called the
P-game.

The relation between the linear programming primal-dual pair and the P-game is
given by the following result.

Theorem 7.1 Let z = (u, v, λ) be an equilibrum strategy of the P-game with λ > 0,
then

x = 1

λ
v and y = 1

λ
u

are optimal solutions of the primal and dual problems, respectively.

Proof If z is an equilibrium, then P z� 0, that is,

Av − bλ � 0 (7.3)

−AT u + cλ � 0 (7.4)

bT u − cT v � 0. (7.5)

Since λ > 0 and z � 0,

x = 1

λ
v � 0 and y = 1

λ
u � 0,

furthermore from (7.3),
Ax � b

and from (7.4),
AT y � c
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implying that x and y are feasible solutions of the primal and dual problems,
respectively. Furthermore (7.5) implies that

bT y � cT x,

however from the weak duality property (see Appendix F) we know that

bT y � cT x,

so bT y = cT x , and then the strong duality theorem (see Appendix F) implies that x
is an optimal solution of the primal and y is an optimal solution of the dual problem.

�

Example 7.2 Consider now the following linear programming problem:

maximize x1 + 2x2
subject to x1 � 0

− x1 + x2 � 1

5x1 + 7x2 � 25.

First we have to rewrite this problem into a primal form. Since there is no sign
restriction on x2, we have to rewrite it as the difference of two nonnegative variables,

x2 = x+
2 − x−

2

where x+
2 , x−

2 � 0. Then the objective function and the sign constraints become

maximize x1 + 2x+
2 − 2x−

2

subject to x1, x
+
2 , x−

2 � 0.

The other two conditions become the following:

−x1 + x+
2 − x−

2 � 1,

which can be rewritten as

x1 − x+
2 + x−

2 � −1

and the last constraint becomes

5x1 + 7x+
2 − 7x−

2 � 25.
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Therefore in the primal problem

A =
(
1 −1 1
5 7 −7

)
, b =

(−1
25

)
and cT = (1, 2,−2).

The corresponding P-game is defined by the matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 −1 1 1
0 0 5 7 −7 −25

−1 −5 0 0 0 1
1 −7 0 0 0 2

−1 7 0 0 0 −2
−1 25 −1 −2 2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The equilibria of this game can provide the primal and dual optimal solutions of the
linear programming problem.

�

Consider next a matrix game with A(1) > 0. This condition does not restrict gen-
erality, since adding the same constant to all elements of A(1) does not change the
equilibria. Construct then the symmetric matrix game with matrix

P =
⎛
⎝

0 A(1) −1
−A(1)T 0 1
1T −1T 0

⎞
⎠ .

The following theorem shows the equivalence of matrix game with A(1) and the
symmetric matrix game with P .

Theorem 7.2 The following relations are valid with A(1) > 0 :
(a) If z = (u, v, λ) is an equilibrium of the P-game, then with a = 1−λ

2 ,

x = 1

a
u and y = 1

a
v

the strategy pair (x, y) is an equilibrium of the matrix game with matrix A(1) and λ
a

is the value of the game;
(b) If (x, y) is an equilibrium of the matrix game with A(1) and v is the value of the
game, then vector

z = 1

2 + v
(x, y, v)T

is an equilibrium strategy of the P-game.
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Proof (a) Assume that z = (u, v, λ) is an equilibrium of the P-game, then Pz � 0,
that is,

A(1)v − 1λ � 0 (7.6)

−A(1)T u + 1λ � 0 (7.7)

1T u − 1T v � 0. (7.8)

First we show that 0 < λ < 1. If λ = 1, then (since z is a probability vector) u = 0
and v = 0 contradicting to (7.7). If λ = 0, then 1T u + 1T v = 1 and by (7.8), v must
have at least one positive component which contradicts (7.6).

Next we show that 1T u = 1T v. From (7.6) and (7.7),

uT A(1)v − uT 1λ � 0

−vT A(1)T u + vT 1λ � 0

and by adding these inequalities we have

λ(vT 1 − uT 1) � 0

implying that
1T v � 1T u.

This relation and (7.8) imply that 1T u = 1T v.
Select a = 1−λ

2 (> 0) then 1T v = 1T u = a, so both vectors

x = 1

a
u and y = 1

a
v

are probability vectors, furthermore from (7.7)

A(1)T x = 1

a
A(1)T u � λ

a
1

and from (7.6),

A(1) y = 1

a
A(1)v � λ

a
1.

Select finally α1 = λ
a and α2 = − λ

a , then (x, α2) and (y, α1) are feasible solutions
of the linear programming pair (6.12) with α1 + α2 = 0 implying that they are opti-
mal solutions, so the strategy pair (x, y) is an equilibrium of the matrix game with

matrix A(1).
(b) The proof of the other part can be made similarly to that of part (a), so it is left
as an exercise to the interested reader.

�
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Example 7.3 Consider now the matrix game with matrix

A =
⎛
⎝

2 1 0
2 0 3

−1 3 3

⎞
⎠ .

Since A has a negative element, we can add 2 to all of its elements without changing
the equilibria. So we can now consider the matrix game with matrix

A(1) =
⎛
⎝
4 3 2
4 2 5
1 5 5

⎞
⎠ .

Then the equivalent symmetric matrix game is defined with matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 4 3 2 −1
0 0 0 4 2 5 −1
0 0 0 1 5 5 −1

−4 −4 −1 0 0 0 1
−3 −2 −5 0 0 0 1
−2 −5 −5 0 0 0 1
1 1 1 −1 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

�

7.5 Method of Fictitious Play

In this section an iteration method will be introduced to solve matrix games. The idea
is that at each iteration step the players select best responses against the last selected
strategies of the competitors. This idea without any modification has the problem
that the best choices are usually basis vectors depending on which component of
A(1)s2 or −sT1 A

(1) is maximal. Sequence of different basis vectors never converge,
so mixed strategies have to be introduced into the procedure. The method can be
described in the following way:

At the initial step, k = 1, player 1 selects an initial strategy, s(1)
1 , and then player

2 finds his best response by finding the basis vector e j1 such that

s(1)T
1 A(1)e j1 = min

j

{
s(1)T
1 A(1)e j

}
(7.9)

and let s(1)
2 = e j1 . Notice that j1 is the index of the smallest element of s(1)T

1 A(1).
At each further step k � 2 let
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s(k−1)
2 = 1

k − 1

k−1∑
i=1

s(i)
2 (7.10)

be the average of all previous basis vector choices of player 2 and select s(k)
1 = eik

such that
eTik A

(1)s(k−1)
2 = max

i

{
eTi A

(1)s(k−1)
2

}
. (7.11)

Notice that element ik is the largest in vector A(1)s(k−1)
2 . Let

s(k)
1 = 1

k

k∑
i=1

s(i)
1 (7.12)

be the average of all previous basis vector choices of player 1, and select s(k)
2 = e jk

such that
s(k)T
1 A(1)e jk = min

j

{
s(k)T
1 A(1)e j

}
, (7.13)

where component jk is the smallest in vector s(k)T
1 A(1).

Then go back with the next value of k.
We present the convergence theorem of this algorithm (Shapiro, 1958) without

giving the lengthy and complicated proof.

Theorem 7.3 Any limit point of sequences
{
s(k)
1

}
and

{
s(k)
2

}
gives equilibrium

strategies.

Example 7.4 Consider the matrix game with A(1) =
(
1 2
2 1

)
, which has no pure

strategy equilibrium. The method of fictitious play consists of the following steps.
k = 1 : Select

s(1)
1 =

(
1
0

)
,

then

s(1)T
1 A(1) = (1, 0)

(
1 2
2 1

)
= (1, 2)

where the minimal component is the first. So

s(1)
2 =

(
1
0

)
.

k = 2 :
s(1)
2 = s(1)

2 =
(
1
0

)
,
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and

A(1)s(1)
2 =

(
1 2
2 1

) (
1
0

)
=

(
1
2

)

where the largest component is the second, so

s(2)
1 =

(
0
1

)
, and s(2)

1 = 1

2

[ (
1
0

)
+

(
0
1

)]
=

( 1
2
1
2

)
.

Since

s(2)T
1 A(1) = (

1

2
,
1

2
)

(
1 2
2 1

)
= (

3

2
,
3

2
),

either component can be selected as minimal. For example let s(2)
2 =

(
1
0

)
.

k = 3 :
s(2)
2 = 1

2

[ (
1
0

)
+

(
1
0

) ]
=

(
1
0

)

and

A(1)s(2)
2 =

(
1 2
2 1

) (
1
0

)
=

(
1
2

)

where the maximum component is the second, so

s(3)
1 =

(
0
1

)
and s(3)

1 = 1

3

[(
1
0

)
+

(
0
1

)
+

(
0
1

)]
=

( 1
3
2
3

)
.

Since

s(3)T
1 A(1) = (

1

3
,
2

3
)

(
1 2
2 1

)
= (

5

3
,
4

3
)

with the minimal component being the second, we have

s(3)
2 =

(
0
1

)
.

k = 4 :
s(3)
2 = 1

3

[ (
1
0

)
+

(
1
0

)
+

(
0
1

)]
=

( 2
3
1
3

)

and

A(1)s(3)
2 =

(
1 2
2 1

) ( 2
3
1
3

)
=

(
4
3
5
3

)
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where the second component is the largest, so

s(4)
1 =

(
0
1

)
, and s(4)

1 = 1

4

[ (
1
0

)
+

(
0
1

)
+

(
0
1

)
+

(
0
1

) ]
=

( 1
4
3
4

)
.

Since

s(4)T
1 A(1) = (

1

4
,
3

4
)

(
1 2
2 1

)
= (

7

4
,
5

4
)

with the second component being the smaller, we have

s(4)
2 =

(
0
1

)

and so on for k = 5, 6, . . .

�

Since linear programming problems can be reformulated as matrix games, the
fictitious play method can be also used to solve linear programming problems. The
convergence of thismethod is usuallymuch slower than the application of the simplex
method. Therefore it has only theoretical importance.

7.6 Method of Von Neumann

Consider a symmetric matrix game with matrix P . Since any matrix game can be
reduced to an equivalent symmetric matrix game by Theorem7.2, this assumption
does not restrict the general application of the method. So P is an n × n skew-
symmetric matrix.

Introduce the following functions:

ui : Rn �→ R such that ui (s) = eTi Ps (i = 1, 2, . . . , n)

which is the i th element of vector Ps;

φ : R �→ R such that φ(u) = max{0; u} � 0

Φ : Rn �→ R such that Φ(s) =
n∑

i=1

φ
(
ui (s)

)
� 0

ψ : Rn �→ R such that ψ(s) =
n∑

i=1

φ2
(
ui (s)

)
� 0,

and consider the system of ordinary differential equations:
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ṡ j (t) = φ
(
u j

(
s(t)

)) − Φ
(
s(t)

)
s j (t)( j = 1, 2, . . . , n) (7.14)

with a probability vector initial condition,

s j (0) = s(0)
j ( j = 1, 2, . . . , n)

such that 0 � s(0)
j � 1 and

∑n
j=1 s

(0)
j = 1.

The idea behind Eq. (7.14) is the following. The value of the symmetric matrix
game is zero. If at a strategy s, φ

(
u j (s)

)
> 0, then eTj Ps > 0 however eTj Pe j = 0,

so player 2 needs to increase s j to unity (since his payoff is zero at e j and negative
at s). The increase of s j in this case is represented by the first term of the right hand
side. Similarly, if φ

(
u j (s)

)
< 0, then player 2 wants to decrease s j . The second term

of the right hand side guarantees that vector s(t) remains a probability vector for all
t � 0. The convergence of vectors s(t) as t → ∞ is stated in the following theorem.

Theorem 7.4 Let tk (k = 1, 2, . . .) be a positive, strictly increasing sequence which
converges to infinity. Then any limit point of the sequence

{
s(tk)

}
is an equilibrium

strategy and there exists a constant c > 0 such that

eTj Ps(tk) �
√
n

c + tk
. (7.15)

Proof The proof consists of several steps.
(a) We first show that s(t) is a probability vector for all t � 0. Assume that with
some j and t1 > 0, s j (t1) < 0. Let

t0 = sup
{
t |0 < t < t1, s j (t) � 0

}
.

By continuity, s j (t0) = 0 and for all τ ∈ (t0, t1], s j (τ ) < 0. Since φ(u j ) and
Φ

(
s(t)

)
are nonnegative,

ṡ j (τ ) = φ
(
u j

(
s(τ )

)) − Φ
(
s(τ )

)
s j (τ ) � 0

and by the Lagrange mean-value theorem

s j (t1) = s j (t0) + ṡ j (τ )(t1 − t0) � 0

contradicting the assumption that s j (t1) < 0.
Next we show that for all t � 0,

∑n
j=1 s j (t) = 1. Notice that

(
1 −

n∑
j=1

s j (t)
)′ = −

n∑
j=1

ṡ j (t) = −
n∑
j=1

φ
(
u j (s(t)

)) + Φ
(
s(t)

) n∑
j=1

s j (t)
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= − Φ
(
s(t)

)[
1 −

n∑
j=1

s j (t)
]
.

So function

f (t) = 1 −
n∑
j=1

s j (t)

satisfies the homogeneous differential equation

ḟ (t) = −Φ
(
s(t)

)
f (t) (7.16)

with the initial condition f (0) = 0, therefore for all t � 0, f (t) = 0.

(b) Assume that for some t � 0, φ
(
ui

(
s(t)

))
> 0, then

d

dt
φ
(
ui

(
s(t)

)) = d

dt
ui

(
s(t)

) = eTi Pṡ(t) =
n∑
j=1

pi j ṡ j (t)

where pi j is the (i, j) element of matrix P . Therefore

d

dt
φ
(
ui

(
s(t)

)) =
n∑
j=1

pi jφ
(
u j

(
s(t)

)) −
n∑
j=1

pi jΦ
(
s(t)

)
s j (t).

Notice that the second term equals

Φ
(
s(t)

) n∑
j=1

pi j s j (t) = Φ
(
s(t)

)
φ
(
ui (t)

)
. (7.17)

Multiplying both sides of (7.17) by φ
(
ui (t)

)
and adding up the resulting equations

for i = 1, 2, . . . , n we have

n∑
i=1

φ(ui )
d

dt
φ(ui ) =

n∑
i=1

n∑
j=1

pi jφ(ui )φ(u j ) − Φ
(
s(t)

)
ψ

(
s(t)

)
.

Since P is skew-symmetric, the first term equals zero, so

1

2

d

dt
ψ

(
s(t)

) = −Φ
(
s(t)

)
ψ

(
s(t)

)
. (7.18)

Notice that if φ
(
ui

(
s(t)

)) = 0, then this relation still holds, since zero terms are

added to both sides.



7.6 Method of Von Neumann 103

(c) Assume next that with some t0,ψ
(
s(t0)

) = 0. Then from the differential equation
ψ

(
s(t)

) = 0 for all t � t0, so for all i , φi
(
s(t)

) = 0 implying that Ps(t)) � 0, so
s(t) is equilibrium.
(d) If ψ

(
s(t)

)
> 0 for all t , then

1

2

d

dt
ψ

(
s(t)

)
� −ψ

(
s(t)

) 3
2 (7.19)

since clearly
Φ

(
s(t)

)2 � ψ
(
s(t)

)
.

Relation (7.19) can be rewritten as

1

2

d

dt
ψ

(
s(t)

)
ψ

(
s(t)

)− 3
2 � −1

and by integrating both sides between 0 and t we have

−ψ
(
s(t)

)− 1
2 + c � −t

with c = ψ
(
s(0)

)− 1
2 . Therefore

ψ
(
s(t)

) 1
2 � 1

c + t
,

and so

eTi Ps(t) � φ(ui
(
s(t)

)
� Φ

(
s(t)

)
�

√
nψ

(
s(t)

)
�

√
n

c + t

since the Cauchy-Schwarz inequality implies that

Φ(s) =
n∑

i=1

1 · φ
(
ui (s)

)
�

√√√√
n∑

i=1

1

√√√√
n∑

i=1

φ2
(
ui (s)

)
.

Taking any increasing sequence {tk} such that tk → ∞, for any limit point s∗ and
all i ,

eTi Ps
∗ � 0

so Ps∗ � 0 implying that s∗ is an equilibrium.

�
Example 7.5 Consider again the matrix game of the previous example with matrix

A(1) =
(
1 2
2 1

)
.
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Since this matrix game is not symmetric, we have to use Theorem 7.2 to construct
the equivalent symmetric matrix game with matrix

P =

⎛
⎜⎜⎜⎜⎝

0 0 1 2 −1
0 0 2 1 −1

−1 −2 0 0 1
−2 −1 0 0 1
1 1 −1 −1 0

⎞
⎟⎟⎟⎟⎠

.

Notice
u1(s) = s3 + 2s4 − s5
u2(s) = 2s3 + s4 − s5
u3(s) = −s1 − 2s2 + s5
u4(s) = −2s1 − s2 + s5
u5(s) = s1 + s2 − s3 − s4,

so
φ(u1) = max{0; s3 + 2s4 − s5)

φ(u2) = max{0; 2s3 + s4 − s5)

φ(u3) = max{0;−s1 − 2s2 + s5)

φ(u4) = max{0;−2s1 − s2 + s5)

φ(u5) = max{0; s1 + s2 − s3 − s4).

and

Φ
(
s(t)

) =
5∑

i=1

φ(ui ).

So the 5-dimensional differential equation (7.14) can be easily formulated and
solved by any computer method.

�



Chapter 8
Uniqueness of Equilibria

In examining the existence conditions for equilibria in N -person games either the
Banach or the Kakutani fixed point theorem was used. The Banach fixed point the-
orem guaranteed the existence of the unique equilibrium and an iteration algorithm
was also suggested to compute the equilibrium. However the existence theorems
based on the Kakutani fixed point theorem (Theorems5.3 and 5.4) do not guaran-
tee uniqueness. For example, by selecting constant payoff functions all strategies
provide equilibria, and constant functions are continuous as well as concave. So
the conditions of the Nikaido-Isoda theorem are satisfied if the strategy sets are
nonempty, convex, closed and bounded. It is well known from optimization theory
that strictly concave functions cannot have multiple maximum points. Unfortunately
for N-person games this result cannot be extended, since as the following example
shows, there is the possibility of even infinitelymany equilibria if all payoff functions
are strictly concave.

Example 8.1 Consider a two-person game (N = 2) with strategy sets S1 = S2 =
[0, 1] and payoff functions

φ1(x, y) = φ2(x, y) = 2x + 2y − (x + y)2

for x ∈ S1 and y ∈ S2.
Notice that all conditions of the Nikaido-Isoda Theorem are satisfied and φ1 is

strictly concave in x and φ2 strictly concave in y.
Since

∂φ1

∂x
= 2 − 2(x + y),

the best response of player 1 is given as

R1(y) = 1 − y,
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and similarly that of player 2 is the following:

R2(x) = 1 − x .

These best responses are illustrated in Fig. 8.1, showing that there are infinitely
many equilibria: {

(x, y)|0 � x � 1, y = 1 − x
}
.

�

Fig. 8.1 Best responses in Example 8.1

8.1 Criteria Based on Best Responses

Since equilibria are the fixed points of the best response mappings, we will first give
sufficient conditions for the uniqueness of equilibria in terms of the best response
mappings.

Let s denote the simultaneous strategy vector of the players, s = (s1, . . . , sN )

with sk ∈ Sk being the strategy of player k. The best response mapping is defined as

R(s) = (R1(s), . . . , RN (s)),

where for k = 1, 2, . . . , N , Rk(s) is defined in (3.1).

Theorem 8.1 Assume that R(s) is point-to-point and either

(a) ||R(s) − R(s ′)|| < ||s − s ′|| for all s, s ′ ∈ S1 × · · · × SN , s �= s ′or
(b) ||R(s) − R(s ′)|| > ||s − s ′|| for all s, s ′ ∈ S1 × · · · × SN , s �= s ′.

Then the game cannot have multiple equilibria.
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Proof Assume s∗ and s∗∗ are both equilibria, then R(s∗) = s∗ and R(s∗∗) = s∗∗, so

||R(s∗) − R(s∗∗)|| = ||s∗ − s∗∗||

contradicting the assumptions. �

Notice that condition (a) is slightly weaker than the contraction condition, which
guaranteed the existence of a fixed point. As the next example shows, condition (a)
guarantees only uniqueness, no existence is implied by this condition.

Example 8.2 Consider a single-dimensional mapping

R(s) = s + 1

s + 1

on the interval [0,∞], which clearly has no fixed point.

However

R′(s) = 1 − 1

(s + 1)2
∈ [0, 1)

and with some c between s and s ′

|R(s) − R(s ′)| = |R′(c)| · |s − s ′| < |s − s ′|

showing that condition (a) is satisfied. �
Condition (b) does not guarantee existence either, as shown in the following

example.

Example 8.3 Consider function R(s) = 2s on the interval [1,∞). Clearly no fixed
point exists (since 0 /∈ [1,∞)), but

|R(s) − R(s ′)| = |2 s − 2 s ′| = 2 s − s ′| > |s − s ′|

showing that condition (b) is satisfied. �

In Appendix E we show that if R(s) is point-to-point and −R(s) is monotonic, then
R(s) cannot have multiple fixed points implying the following result.

Theorem 8.2 Assume that R(s) is point-to-point and−R(s) is monotonic. Then the
game cannot have multiple equilibria.

The conditions of this theorem do not guarantee existence of a fixed point, as it
is demonstrated in the following example.
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Example 8.4 Let

R(s) =
{
1 − s

2 ifs < 1
2

1
2 − s

2 ifs � 1
2

on interval [0, 1], which has no fixed point. �

8.2 Criteria Based on Payoff Functions

The application of Theorems 8.1 and 8.2 in establishing the uniqueness of the equi-
librium faces the difficulty of determining and examining the best response mapping.
The following result of Rosen guarantees uniqueness based on only certain properties
of the strategy sets and the payoff functions, so it can be easily applied in practical
cases.

Assume that the N -person game G = {N ; S1, . . . , SN ;φ1, . . . , φN } satisfies the
following conditions for all k = 1, 2, . . . , N :
(a) There is a function g

k
: Dk �→ R

pk such that

Sk = {
sk |gk(sk) � 0

}
(8.1)

where Dk ⊂ R
mk is an open set, g

k
is continuously differentiable on Dk and its

components are all concave in sk ;
(b) Sk satisfies the Kuhn-Tucker regularity condition;
(c) φk is twice continuously differentiable on D1 × D2 × · · · × DN .

Introduce function

h(s, r) =

⎛

⎜⎜⎜
⎝

r1 
1 φ1(s)
r2 
2 φ2(s)

...

rN 
N φN (s)

⎞

⎟⎟⎟
⎠

(8.2)

where s is the simultaneous strategy vector, r ∈ R
N is a nonnegative vector, and for all

k,
kφk(s) is the gradient vector ofφk with respect to sk as a column vector. Therefore
the dimension of vector h(s, r) is M = ∑N

k=1 mk . The game G is called strictly
diagonally concave if there is an r � 0 such that for all s �= s ′, s, s ′ ∈ S1 × · · · × SN ,

(s − s ′)T
(
h(s, r) − h(s ′, r)

)
< 0. (8.3)

Notice that G is strictly diagonally concave if and only if −h(s, r) is strictly
monotonic.
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Theorem 8.3 (Rosen, 1965) Assume that conditions (a), (b) and (c) hold, further-
more the game is strictly diagonally concave. Then the game cannot have multiple
equilibria.

Proof Assume s(1) = (
s(1)
1 , . . . , s(1)

N

)
and s(2) = (

s(2)
1 , . . . , s(2)

N

)
are both equilibria.

Then the Kuhn-Tucker conditions (6.3) imply the existence of vectors u(1)
k and u(2)

k
such that for l = 1, 2,

u(l)T
k g

k

(
s(l)
k

) = 0 (8.4)

and

kφk

(
s(l)

) + u(l)T
k 
k gk(sk) = 0T .

That is,


k φk
(
s(l)

) +
pk∑

j=1

u(l)
k j 
 gkj

(
s(l)
k

) = 0 (8.5)

where 
kφk
(
s(l)

)
is now a column vector, u(l)

k j is the j th element of u(l)
k and


k j gk j
(
s(l)
k

)
is the gradient vector of the j th component of g

k

(
s(l)
k

)
as a col-

umn vector. For l = 1, multiply Eq. (8.5) by rk
(
s(2)
k − s(1)

k

)T
and for l = 2 multi-

ply by rk
(
s(1)
k − s(2)

k

)T
from the left hand side and add the resulting equations for

k = 1, 2, . . . , N to have

0 =
[(
s(2) − s(1)

)T
h
(
s(1), r

) + (
s(1) − s(2)

)T
h
(
s(2), r

)]+
N∑

k=1

pk∑

j=1

{
rk

[
u(1)
k j

(
s(2)
k − s(1)

k

)T 
 gkj
(
s(1)
k

) + u(2)
k j

(
s(1)
k − s(2)

k

)T 
 gkj
(
s(2)
k

)]}
.

(8.6)

Since all components gkj of gk are concave, (B3) implies that

(
s(2)
k − s(1)

k

)T 
 gkj
(
s(1)
k

)
� gkj

(
s(2)
k

) − gkj
(
s(1)
k

)

and (
s(1)
k − s(2)

k

)T 
 gkj
(
s(2)
k

)
� gkj

(
s(1)
k

) − gkj
(
s(2)
k

)
,

furthermore the first term on the right hand side of (8.6) is positive by (8.3). Therefore
the right hand side of (8.6) is greater than

N∑

k=1

pk∑

j=1

{
rk

[
u(1)
k j gk j

(
s(2)
k

) + u(2)
k j gk j

(
s(1)
k

)]}
� 0,
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where we also used (8.4). This is a clear contradiction. Hence the equilibrium cannot
be multiple. �

In practical cases it is usually difficult to check if condition (8.3) holds or not,
however the following simple result gives a sufficient condition.

Theorem 8.4 Let J (s, r) denote the Jacobian matrix of h(s, r) with respect to s.
If J (s, r) + JT (s, r) is negative definite, then condition (8.3) holds.

This result follows immediately from the sufficient condition for a function being
strictly monotonic (Appendix E).

Example 8.5 Consider now a duopoly (N = 2)with strategy sets S1 = S2 = [0, 1],
cost functions Ck(sk) = sk and price function p(s) = 2 − s with s = s1 + s2.

The payoff functions are as follows:

φ1(s1, s2) = s1(2 − s1 − s2) − s1 = −s21 + s1(1 − s2)

φ2(s1, s2) = s2(2 − s1 − s2) − s2 = −s22 + s2(1 − s1)

with derivatives (which are the gradients in the single-dimensional case)


1φ1(s1, s2) = −2s1 + 1 − s2

2φ2(s1, s2) = −2s2 + 1 − s1,

so

h(s, r) =
(
r1(−2s1 + 1 − s2)
r2(−2s2 + 1 − s1)

)
.

The Jacobian of h(s, r ) with respect to s has the following form

J (s, r) =
(−2r1 −r1

−r2 −2r2

)
,

so

J (s, r) + J T (s, r) =
( −4r1 −(r1 + r2)

−(r1 + r2) −4r2

)
.

This matrix is negative definite, if the eigenvalues are negative. The characteristic
polynomial of this matrix is

det

( −4r1 − λ −(r1 + r2)
−(r1 + r2) −4r2 − λ

)
=λ2 + λ(4r1 + 4r2) + (

16r1r2 − (r1 + r2)
2
)
.
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Selecting r1 = r2 = 1 for example, this polynomial becomes

λ2 + 8λ + 12 = 0

with rootsλ1 = −2, λ2 = −6. Since both are negative, J (s, r) + J T (s, r) is negative
definite implying that h(s, r) is strictly diagonally concave. Therefore there is at most
one equilibrium. Notice that this duopoly satisfies all conditions of the Nikaido-Isoda
theorem, so there is at least one equilibrium. Thus there is exactly one equilibrium,
which can be easily determined based on the best responses of the players. The first
order conditions imply that at the stationary points

∂φ1

∂s1
= −2s1 + 1 − s2 = 0 and

∂φ2

∂s2
= −2s2 + 1 − s1 = 0

implying that the best responses are

R1(s2) = 1 − s2
2

and R2(s1) = 1 − s1
2

.

Since both are feasible with all s1, s2 ∈ [0, 1], the equilibrium is the solution of
equations

s1 = 1 − s2
2

and s2 = 1 − s1
2

,

which is

s∗
1 = s∗

2 = 1

3
.

�



Chapter 9
Repeated and Dynamic Games

In this chapter repeated and dynamic games will be discussed in which the players
know the strategy sets and payoff functions of all players, that is, the game has
complete information. It is also assumed that at each time period each player knows
the complete history of the game which consists of the past strategy selections and
corresponding payoff values of all players. It means that the game also has perfect
information.

The most simple case occurs when at time periods t = 0, 1, 2, . . . , a game is
played (which can be identical or not), and the strategy selections and payoffs at time t
are independent of these occurred in the previous time periods. The games at different
time periods are completely independent of each other. The payoff of this repeated
game of each player is the (maybe discounted) sum of his payoffs at the different
time periods. It is very easy to see that equilibrium of the repeated game occurs when
the players select equilibrium strategies at all time periods t = 0, 1, 2, . . .

9.1 Leader-Follower Games

One of the most simple dynamic game is known as Leader-follower or Stackelberg
game. Assume that there are two players, player 1 is the leader and player 2 is the
follower. The game is played in two stages. In stage 1, the leader selects a strategy
and let the follower know it. In stage 2 the follower selects his strategy and then
both players receive the payoffs. This situation can be mathematically modeled as
follows. Let S1 and S2 be the strategy sets and φ1 and φ2 the payoff functions. In
stage 1 the leader selects strategy s1 ∈ S1, then the follower (assuming he is a rational
player) selects his best response against s1, which is denoted by R2(s1). So the leader
knows that his payoff will become φ1(s1, R2(s1)), which depends on only his strategy
choice. So the leader solves the optimum problem
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maximize φ1
(
s1, R2(s1)

)

subject to s1 ∈ S1.
(9.1)

Let s∗
1 be an optimum solution, then

(
s∗
1 , R2(s∗

1 )
)
is the solution of the game,

which is usually called the Stackelberg equilibrium (von Stackelberg, 1934). In the
procedure first the best response of player 2 is determined and then the payoff of
player 1 is maximized subject to the best response selection of player 2. This process
is called backward induction, which is illustrated by the following examples.

Example 9.1 (Duopoly Stackelberg game) Consider a duopoly of a home-firm and
a foreign firm. The price function is linear: p(s) = a − b(s1 + s2), where s1 and s2
are the production levels of the firms. The marginal cost c is the same for the firms,
however the home-firm receives government subsidy α to all units of its product. The
strategy sets are clearly S1 = S2 = [0,∞) and the payoff functions are as follows:

φ1(s1, s2) = s1(a − bs1 − bs2) − (c − α)s1
φ2(s1, s2) = s2(a − bs1 − bs2) − cs2.

Considering the home-firm as the leader and the foreign firm as the follower, first
we have to determine the best response of player 2. The first order conditions imply
that

∂φ2

∂s2
= a − bs1 − 2bs2 − c = 0,

so by assuming interior optimum,

R2(s1) = a − c − bs1
2b

. (9.2)

The home-firm knows that the foreign firm is rational, so it will chose R2(s1), so
the payoff of the home-firm will become

φ1
(
s1, R2(s1)

) = s1(a − bs1 − a − c − bs1
2

− c + α)

= s1
2

(a − c − bs1 + 2α),

and the first order conditions for maximizing this function gives equation

a − c − 2bs1 + 2α = 0,
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so

s∗
1 = a − c + 2α

2b
(9.3)

and therefore

s∗
2 = R2(s

∗
1 ) = a − c − 2α

4b
. (9.4)

It will be interesting to compare the Stackelberg equilibrium and the Nash equi-
librium of the game. The best response of player 1 is obtained from the first order
condition of maximizing φ1,

∂φ1

∂s1
= a − 2bs1 − bs2 − c + α = 0

implying that

R1(s2) = a − c − bs2 + α

2b
(9.5)

by assuming interior optimum. TheNash equilibrium is then the solution of equations

s1 = a − c − bs2 + α

2b

s2 = a − c − bs1
2b

,

the solutions of which are

s∗∗
1 = a − c + 2α

3b
and s∗∗

2 = a − c − α

3b
. (9.6)

Notice that s∗
1 = s∗∗

1 · 3
2 and s

∗
2 = s∗∗

2 · 3
4 − α

4b , so being the leader gives an output
increase to the home-firm and being the follower decreases output of the foreign
firm. �

There is an alternative method to find solutions for leader-follower games. The
follower optimizes his payoff function φ2(s1, s2) with given s1 and then the leader
maximizes φ1(s1, s2) assuming optimality of s2. This can be described by a con-
strained optimization problem where φ1(s1, s2) is maximized and the constraints are
the Kuhn-Tucker optimality conditions for maximizing φ2(s1, s2) with respect to s2.

Example 9.2 The previous example is reconsidered now. The optimum problem of
player 2 is the following:



116 9 Repeated and Dynamic Games

maximize s2(a − bs1 − bs2) − cs2
subject to s2 � 0.

So the Kuhn-Tucker conditions are given as

u ≥ 0, s2 � 0

a − bs1 − 2bs2 − c + u = 0

us2 = 0

since we have only one constraint on s2, so only one Lagrange multiplier is needed
and the gradient of φ2 with respect to s2 is the usual derivative. So the leader-follower
solution can be obtained by solving the following maximum problem:

maximize s1(a − bs1 − bs2) − (c − α)s

subject to s1, s2, u � 0

a − bs1 − 2bs2 − c + u = 0

us2 = 0.

The last constraint implies that either u = 0 or s2 = 0. In the case of interior
solution s2 > 0, so u = 0. Then the second constraint can be solved for s2, which is
the interior best response of player 2 and by substituting it into the objective function
the same problem is obtained as in the previous example. �

Example 9.3 (Wages and Employment) Consider a firmwhich has complete control
on its employment and faces a monopoly union which has exclusive control on the
wages. The union is considered the leader and presents its wage request w to the
firm, and then the firm decides on its employment L based on the wage requirements
(Leontief, 1946). The strategy sets of the players are S1 = [0,W ] meaning thatW is
the largest wage the union can request, and S2 = [0,∞). The payoff function of the
firm is

φ2(w, L) = R(L) − wL (9.7)

where R(L) is the amount of revenue produced by the work force of size L , and wL
is the amount of wages the firm has to pay to the workers. Function R(L) is strictly
increasing in L . The payoff of the union is φ1(w, L) which strictly increases in both
w and L .

As a numerical example select W = 2,

R(L) = √
L and φ1(w, L) = w2(−w2 + 2w + 20)L . (9.8)

Notice that
−w2 + 2w + 20 = −(w − 1)2 + 21 > 0

so φ1 strictly increases in L , furthermore
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∂φ1

∂w
= ( − 4w3 + 6w2 + 40w

)
L = (2w2(3 − 2w) + 40w)L > 0

so φ1 strictly increases in w as well.
The best response of the firm is obtained by maximizing

φ2(w, L) = √
L − wL . (9.9)

By differentiation
∂φ2

∂L
= 1

2
√
L

− w = 0,

so

L = R2(w) = 1

4w2
,

and therefore the corresponding payoff of the union becomes

φ1
(
w, R2(w)

) = w2(−w2 + 2w + 20)
1

4w2
= 1

4
(−w2 + 2w + 20)

whichhasmaximumatw∗ = 1, so thebest responseof thefirmbecomes R2(w
∗) = 1

4 .
The Stackelberg equilibrium is therefore

w∗ = 1 and L∗ = 1

4
.

�

The existence of a Stackelberg equilibrium is not guaranteed in general. However
if the set S1 of the strategies of the leader is compact, its payoffφ1(s1, s2) is continuous
as a bi-variable function and the best response R2(s1) is continuous on S1, then
φ1

(
s1, R2(s1)

)
is a continuous function on a compact set, which has maximum on

S1, so there is at least one Stackelberg equilibrium.
For N -player games for N > 2 the concept of Stackelberg equilibrium can be

generalized in several different ways.
A possibility is that the players are ordered in importance order. Assume that

player 1 is the least important, player 2 is the second least important, and so on. In
this general case the backward induction proceeds as follows. First the best response
of the least important player is determined: R1(s2, . . . , sN ) against the strategy selec-
tions of all other players. In the second stage the second least important player 2
selects its best strategy against the strategy selections of the other players knowing
the choice of player 1. So player 2 maximizes φ2

(
R1(s2, . . . , sN ), s2, . . . , sN

)
, so

the payoff of player 2 depends on only strategies s2, . . . , sN , and his best response
R2(s3, . . . , sN ) depends on only s3, . . . , sN . Next player 3 selects strategy by max-

imizing his payoff φ3

(
R1

(
R2(s3, . . . , sN ), s3, . . . , sN

)
, R2(s3, . . . , sN ), s3, . . . , sN

)
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and his best response depends on only s4, . . . , sN . And finally, player N , the abso-
lute leader considers his payoff which depends on only his own strategy, what he
maximizes.

Another possibility is the assumption of a single leader, say player i1, and the
others are all followers who select a Nash equilibrium among them as an (N − 1)-
person game with given choice si1 of the leader. If sk = Ek(si1)(k �= i1) denotes the
equilibrium strategy of player k given si1 , then the leader will maximize its payoff

φi1

(
E1(si1), . . . , Ei1−1(si1), si1 , Ei1+1(si1), . . . , EN (si1)

)
(9.10)

which depends on only si1 . Let s
∗
i1
be an optimal solution, then

s∗
k =

{
Ek(s∗

i1
) if k �= i1

s∗
i1

if k = i1
(9.11)

is the general Stackelberg equilibrium.
The two above concepts can be combined by dividing the players into groups

G1,G2, . . . ,GM so that Gi ∩ G j = ∅ for i �= j and G1 ∪ G2 ∪ . . . ∪ GM =
{1, 2, . . . , N }, and the groups are ordered in importance order, and inside each group
a Nash-equilibrium is formed among the members. The only difference between this
concept and the above ideas is that at each step the actual group computes its equi-
librium based on the unknown equilibrium strategies of the more important groups
and predicted equilibrium strategies of the less important groups.

9.2 Dynamic Games with Simultaneous Moves

Let t = 0, 1, 2, . . . denote again discrete time scales and assume that the decision
of each player at each time period depends on the past history of the game. As an
illustration of such a game we will now describe the case of “greedy” oligopolists.

Example 9.4 (Dynamic Oligopoly) Consider an N -firm oligopoly with linear price
and cost functions, p(s) = a − bs with s = ∑N

k=1 xk and Ck(xk) = ckxk + dk (k =
1, 2, . . . , N ). At the initial time period t = 0, each firm selects an initial output level,
xk(0), and at each later time period t � 1 the game proceeds as follows. Each firm
forms a prediction (expectation) about the current output of the rest of the industry,
which can be denoted by sEk (t), and then the firm selects its best response Rk

(
sEk (t)

)

as its new output level for time period t . When firm k selects its output level xk(t), it
has no knowledge about the simultaneous output choices of the competitors, however
based on past observations on the behavior and choices of the other players it is able
to form a realistic prediction. In the case of static expectations the firms select the
last observed data, sk(t − 1) = ∑

l �=k xl(t − 1) as their predictions for the new time
period t . The payoff of firm k is given as
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φk(x1, . . . , xN ) = xk(a − bxk − bsk) − (ckxk + dk) (9.12)

so its best response is obtained by differentiation,

a − 2bxk − bsk − ck = 0

implying that

Rk(sk) = a − ck − bsk
2b

. (9.13)

So the output level of this firmat any timeperiod t is obtained as xk(t) = Rk
(
sk(t −

1)
)
, which can be written as

xk(t) = −1

2

∑

l �=k

xl(t − 1) + a − ck
2b

(9.14)

for k = 1, 2, . . . , N . Thus an N -dimensional linear system is obtained with coeffi-
cient matrix

A =

⎛

⎜
⎜⎜
⎝

0 − 1
2 . . . − 1

2− 1
2 0 . . . − 1

2
...

...
...

− 1
2 − 1

2 . . . 0

⎞

⎟
⎟⎟
⎠

= −1

2
1 + 1

2
I

where 1 is the N × N matrix, all elements of which equal unity and I is the N × N
identity matrix.

In examining the long-term properties of the oligopoly, stability analysis is the
appropriate approach. Since the system is linear, the eigenvalues of matrix A decide
the stability or instability of the system. It is well known (see Appendix H) that this
system is asymprotically stable if and only if all eigenvalues are inside the unit circle.
The eigenvalues of matrix 1 have to be determined first. The eigenvalue equation of
matrix 1 has the form

N∑

l=1

ul = λuk (k = 1, 2, . . . , N ) (9.15)

where u1, u2, . . . , uN are the components of the eigenvector associatedwith λ. If λ =
0, then

∑N
k=1 uk = 0, so we have N − 1 linearly independent eigenvectors. If λ �= 0,

then u1 = u2 = · · · = uN , and (9.15) implies that λ = N . Therefore the eigenvalues
of 1 are 0 and N , and so the eigenvalues of A are

−1

2
· 0 + 1

2
· 1 = 1

2
and − 1

2
· N + 1

2
· 1 = −N + 1

2
.
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Since − 1
2 is inside the unit circle, the system is asymptotically stable if and only

if

|N − 1

2
| < 1,

that is, N < 3. Consequently an oligopoly is asymptotically stable if and only if it is
a duopoly.

Better stability conditions can be guaranteed by assuming adaptive expectations,
when the firms adaptively correct the errors of their previous expectations :

sEk (t) = sEk (t − 1) + αk
(
sk(t − 1) − sEk (t − 1)

)
(9.16)

where αk ∈ (0, 1] is the speed of adjustment of firm k, and sk(t − 1) is the actual
output of the rest of the industry in the perspective of firm k. The difference sk(t −
1) − sEk (t − 1) shows the expectation error in the previous time period t − 1. If
sk(t − 1) < sEk (t − 1), then firm k overestimated sk(t − 1) and (9.16) shows that
the firm decreases its expectation in the next period. If sk(t − 1) > sEk (t − 1), then
firm k underestimated sk(t − 1), so for the next time period it wants to increase its
expectation, and if sk(t − 1) = sEk (t − 1) then the firm believes that the previous
expectation was correct, so there is no need to change expectation. As a special case
assume that the firms select identical speed of adjustment, that is, α1 = α2 = · · · =
αN . If α denotes this common value, then (9.16) for k = 1, 2, . . . , N provides a
discrete linear dynamic system

xk(t) = Rk
(
sEk (t)

) = −1

2

(
α

∑

l �=k

xl(t − 1) + (1 − α)sEk (t − 1)
)

+ a − ck
2b

(9.17)

sEk (t) = α
∑

l �=k

xl(t − 1) + (1 − α)sEk (t − 1) (9.18)

with 2N state variables xk and sEk for k = 1, 2, . . . , N . The coefficient matrix of this
system has the special block form

Aa =
(
A1 A2
A3 A4

)

with

A1 =

⎛

⎜⎜⎜
⎝

0 −α
2 . . . −α

2−α
2 0 . . . −α

2
...

...
. . .

...

− α
2 −α

2 . . . 0

⎞

⎟⎟⎟
⎠

, A2 =

⎛

⎜⎜⎜
⎝

− 1−α
2 − 1−α

2
. . .

− 1−α
2

⎞

⎟⎟⎟
⎠
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A3 =

⎛

⎜⎜⎜
⎝

0 α . . . α

α 0 . . . α
...

...
...

α α . . . 0

⎞

⎟⎟⎟
⎠

and A4 =

⎛

⎜⎜⎜
⎝

1 − α

1 − α

. . .

1 − α

⎞

⎟⎟⎟
⎠

.

The eigenvalue equation also has a special block form:

A1u + A2v = λu (9.19)

A3u + A4v = λv (9.20)

where both u and v are N -element vectors. Multiply (9.19) by 2 and add the resulting
equation to (9.20) to get

λ(2u + v) = 0

showing that λ = 0 is an eigenvalue. If λ �= 0, then v = −2u and by substituting it
into (9.19) yields

(A1 − 2A2)u = λu,

so the nonzero eigenvalues are eigenvalues of matrix

A1 − 2A2 = −α

2
(1 − I ) + (1 − α)I = −α

2
1 + (1 − α

2
)I .

Since the eigenvalues of I are all equal unity and the eigenvalues of 1 are 0 and
N , the eigenvalues of A1 − 2A2 are

λ = 1 − α

2
+

{
0

−αN
2

=
{
1 − α

2

1 − (N+1)α
2 .

The system is asymptotically stable if and only if these eigenvalues are inside the
unit circle, that is, when

|1 − (N + 1)α

2
| < 1

which can be rewritten as

α <
4

N + 1
. (9.21)

This relation shows that dynamic oligopolies can become asymptotically stable
with any number of firms if the common speed of adjustment is sufficiently small.
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Notice that the case of α = 1 reduces adaptive expectations to static expectation, in
which case (9.21) holds for only N = 2. This is the same result what was obtained
earlier.

In the previous discussions we considered discrete time scales. Those models can
be easily modified for continuous time scales. In the discrete time scales after time
period t − 1 there was the next time period t , and the new output levels of the firms
were determined based on best response dynamics and given types of expectations.
In the case of continuous time scales there is no “next” time period after t − 1, so
instead of determining the next output level, the “directions of the output changes”
can be specified.

In the case of best response dynamics each firm adjusts its output in the direction
toward its best response. Based on (9.13) this concept results in the dynamic system

ẋk(t) = αk

(
Rk

(
sk(t)

) − xk(t)
)

= αk

(
− 1

2

∑

l �=k

xl(t) − xk(t) + a − ck
2b

)
(9.22)

for k = 1, 2, . . . , N .

In the case of gradient adjustments the firms adjust their outputs proportionally to
their marginal profits. If the marginal profit of a firm is positive, then it is the interest
of the firm to increase output level, and if the marginal profit in negative, then the
interest of the firm is to decrease production level. If the marginal profit is zero, then
the firm believes that its output level is optimum, so there is no need to change it.
This idea can be written as the dynamic system

ẋk(t) = αk
∂φk(x1, . . . , xN )

∂xk
= αk

(
a − 2bxk(t) − b

∑

l �=k

xl(t) − ck
)

= 2bαk

(
− 1

2

∑

l �=k

xl(t) − xk(t) + a − ck
2b

)
(9.23)

for k = 1, 2, . . . , N . Notice that systems (9.22) and (9.23) are basically identical,
instead of αk , 2bαk is selected in (9.23). So it is sufficient to discuss model (9.22). It
is a continuous linear system with coefficient matrix

Ac =

⎛

⎜⎜⎜
⎝

−α1 −α1
2 . . . −α1

2−α2
2 −α2 . . . −α2

2
...

...
...

−αN
2 −αN

2 . . . −αN

⎞

⎟⎟⎟
⎠

.

In the special case of equal speeds of adjustments

Ac = −α

2
1 − α

2
I



9.3 Dynamic Games with Sequential Moves 123

with eigenvalues

λ = −α

2
−

{
αN
2

0.

And since all eigenvalues are negative, the system is always asymptotically stable
(see Appendix H) regardless of the number of firms. �

9.3 Dynamic Games with Sequential Moves

We consider discrete time scales, t = 0, 1, 2, . . .. At time period t = 0 each player
selects an initial strategy s(0)

k independently of each other. If this is an equilibrium,
then no player has incentive to change strategy. Otherwise a dynamic process devel-
ops when at any later time period t � 1, one player k(t) selects new strategy. At t = 0
the initial strategies are announced to all players, and at each time period t � 0, player
k(t) makes his strategy s(t)

k(t) known to all other players. So the complete history of
the game is known to all players at all times.

Assuming greedy and rational players, at time period t � 1 player k(t) maxi-
mizes his payoff where the strategy of each other player l is assumed to be the
last strategy selection of this player. Let s(t) denote the simultaneous strategy vec-
tor of the players at time period t , then s(0) = (

s(0)
1 , s(0)

2 , . . . , s(0)
N

)
and for t � 1,

s(t) = (
s(t)
1 , s(t)

2 , . . . , s(t)
N

)
, where

s(t)
l =

{
s(t−1)
l if l �= k(t)

s(t)
k(t) if l = k(t).

(9.24)

Then at time period t � 1, player k(t) solves the optimization problem

maximize φk(t)
(
s(t)

)

subject to s(t)
k(t) ∈ Sk(t)

(9.25)

where Sk(t) is the strategy set of player k(t) where the strategies of the other players
are assumed to be given. If Rk(t)(s) denotes the best response mapping of player k(t),
then the solution of the optimization problem is

s(t)
k(t) ∈ Rk(t)

(
s(t)

)
. (9.26)

If for all T > 0, every player selects strategy at least ones in time periods T +
1, T + 2, . . . , then the steady states of the dynamic system (9.26) and the Nash
equilibria of the corresponding static game with strategy sets Sl and payoff functions
φl are the same.
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Example 9.5 (Oligopoly with Sequential Moves) Consider again the linear
oligopoly of Example 9.4, where we assumed that at each time period t � 1 the
firms select strategies simultaneously and independently of each other. If sequen-
tial strategy selection is assumed, then the dynamic equation (9.14) is modified as
follows:

x (t)
k(t) = −1

2

∑

l �=k(t)

x (t−1)
l + a − ck(t)

2b
(9.27)

where the simultaneous strategy vector satisfies the recursive equation

x (t)
l =

{
x (t−1)
l if l �= k(t)

x (t)
l if l = k(t).

(9.28)

In the special case of cyclic firm selection, that is, when k(1) = 1, k(2) =
2, . . . , k(N ) = N , k(N + 1) = 1, k(N + 2) = 2, . . . etc., system (9.27) is equiva-
lent with the Gauss-Seidel iteraction process (Szidarovszky & Yakowitz, 1978), for
solving the linear equations

xk = −1

2

∑

l �=k

xl + a − ck
2b

. (k = 1, 2, . . . , N ).

�

Example 9.6 (Sequential bargaining) Assume that two agents want to get a reason-
able business deal, where the set of all possible simultaneous payoff values form a
certain set H in the two-dimensional space, where φ1 and φ2 are the coordinate lines.
The boundaries of H are the nonnegative segments of the coordinate lines and the
graph of a strictly decreasing concave function φ2 = g(φ1) as shown in Fig. 9.1.

Fig. 9.1 Illustration of the bargaining set in Example 9.6
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At the initial time period t = 0, each player announces his payoff request φ(0)
1 and

φ
(0)
2 . Assuming rationality of the players, the initial choices of the players are the

points
(
φ

(0)
1 , g

(
φ

(0)
1

))
and

(
g−1

(
φ

(0)
2

)
, φ

(0)
2

)
on the boundary curve, which is also

called the Pareto frontier. Assume that φ
(0)
1 > g−1

(
φ

(0)
2

)
and φ

(0)
2 > g

(
φ

(0)
1

)
. The

value g
(
φ

(0)
1

)
can be imagined that it is the initial offer of player 1 to player 2, and

the value g−1
(
φ

(0)
2

)
is the initial offer of player 2 to player 1. Since the initial offers

to both players are lower than their payoff requests, they should negotiate in order to
reach a mutually acceptable solution. One way of modeling the negotiation process
is the following (Szidarovszky, 1998). At each time period t = 1, 2, . . . , a player
makes concession by lowering his demand and therefore increasing the amount of
his offer to the other player. This new offer maybe rejected, then negotiation is over,
both players get zero payoff, since no business is made. If the offer is considered as
a basis for further negotiation, then the other player presents a counteroffer and the
game continues.

It is assumed that at each odd time period player 1 presents his offer and at each
even time period player 2 makes concession. Consider a time period t when player

1 gives offer. Let
(
φ

(t−2)
1 , g

(
φ

(t−2)
1

))
and

(
g−1

(
φ

(t−1)
2

)
, φ

(t−1)
2

)
be the last offers of

the two players. If player 1 presents his new offer
(
φ1, g(φ1)

)
to player 2, then the

relative gain of player 2 would be

g(φ1) − g
(
φ

(t−2)
1

)

φ
(t−1)
2 − g

(
φ

(t−2)
1

) . (9.29)

If this relative gain is small, the offer is rejected with high probability, and if it
is large, the negotiation will continue with high probability. Therefore assume that
probability of continuation is given as

(
g(φ1) − g

(
φ

(t−2)
1

)

φ
(t−1)
2 − g

(
φ

(t−2)
1

)
)P2

. (9.30)

where P2 > 0 is the negotiation power of player 2. Giving the offer player 1 faces
a random outcome, since rejection and acceptance would happen with probabilities
and not with certainly. The expected payoff of player 1 is therefore

E1 = φ1

(
g(φ1) − g

(
φ

(t−2)
1

)

φ
(t−1)
2 − g

(
φ

(t−2)
1

)
)P2

. (9.31)

what player 1maximizes in order to get his next offer. Since E1 and ln E1 aremaximal
at the same φ1 value, we consider
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ln E1 = ln φ1 + P2

(
ln

(
g(φ1) − g

(
φ

(t−2)
1

)))
− P2

(
ln

(
φ

(t−1)
2 − g

(
φ

(t−2)
1

)))

(9.32)
and by differentiation

∂ ln E1

∂φ1
= 1

φ1
+ P2g′(φ1)

g(φ1) − g
(
φ

(t−2)
1

) (9.33)

and
∂2 ln E1

∂φ2
1

= − 1

φ2
1

+ P2 · g
′′(φ1)

(
g(φ1) − g(φ(t−2)

1

)) − g′(φ1)
2

(
g(φ1) − g

(
φ

(t−2)
1

))2 < 0

implying that E1 is strictly concave in φ1, so there is a unique optimum. The first
order condition gives equation

h1(φ1) = g(φ1) − g
(
φ

(t−2)
1

) + P2φ1g
′(φ1) = 0. (9.34)

Notice that h1(φ1) is strictly decreasing in φ1, furthermore h1
(
φ

(t−2)
1

)
< 0, there-

fore the optimum value of φ1 can be obtained as follows. If h1
(
g−1

(
φ

(t−1)
2

))
� 0,

then φ1 = g−1
(
φ

(t−1)
2

)
is the optimal choice meaning that player 1 agrees with the

previous offer of player 2, so negotiation is terminated, agreement is reached. Oth-
erwise equation (9.34) has a unique solution, and this is the new offer of player 1.
Then player 2 presents his optimal offer to player 1, which is obtained similarly to
the case of player 1 shown above. Then player 1 accepts or rejects this offer or makes
the next offer and the game continues with a new offer of player 2, and so on. It
can be proved that the game terminates in finitely many steps when either one of the
players rejects an offer or accepts the previous offer of the other player. �

9.4 Finite Tree Games

In the previous two examples the order in which the players selected strategies was
“predetermined”, that is, it did not depend on the history and the current states of
the game. As an illustration of other case we will introduce a class of finite dynamic
games which can be represented by finite trees. A tree is a graph which has no circle.
Assume there are N players, who move along the arcs of the tree, in the following
way. There is a unique initial node, called the root, and a predetermined player moves
along a selected arc originating in the root. When the player arrives to the endpoint
of the arc, then another player continues along an arc originating at this node. At the
endpoint of the arc another player moves forward along an arc, and so on, until the
game ends at a terminal node of the tree. Assume that each player knows the entire
tree, at each node of the tree a player is assigned who selects the arc originating from
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that node and makes the next move to the endpoint of that arc. These assignments are
known to all players and at any stage of the game all players know the entire history
of the game until that stage since there is a unique path between the root and this
point. At each endpoint of the game all players have assigned payoff values what
will be received by the players if the game terminates at that point. The strategy of
each player is a set of decisions at all nodes where that player has to decide about
the continuation of the game. This game is a finite game with complete and perfect
information.

Example 9.7 A special three-person game is shown in Fig. 9.2, where at each node
we show (circled) the player who has to continue the game at that node. The payoff
values of the players are also indicated at each endpoint, the first number is the payoff
of player 1, the second number is that of player 2 and the third number is the payoff
of player 3. �

We will next prove the following existence theorem (Kuhn, 1953):

Theorem 9.1 Every game with complete and perfect information played on a finite,
rooted tree always has at least one equilibrium.

Proof There are several patterns through adjacent arcs from the root to the endpoints
of the tree, however from the root to any given endpoint there is only one path, since
otherwise the tree would have a circle. The length of each path is the number of arcs
contained in the path. Consider the lengths of the paths from the root to any of the
endpoints. The length of the tree is defined as the length of the longest path from the
root to an endpoint, which is denoted by L . The proof is based on finite induction
with respect to L .

If L = 0, then the game has only one node, the root. And clearly this is an equilib-
rium. Assume next that all tree games with lengths less than L have at least one equi-
librium, and consider a game with length L . Assume that player k0 is assigned to the
root, and he can select fromM arcs with endpoints I1, I2, . . . , IM . ThenM subgames
are defined, the roots of them are these nodes and the arcs of each subgame are those
arcs which can be reached starting from its root. Let G1,G2, . . . ,GM denote these
subgames. Since the length of each of them is less than L , all of them have at least
one equilibrium. If φk(1)

0
, . . . , φk(M)

0
denote the payoffs of player k0 at these equilibria,

then the equilibrium of the original game can be obtained as follows. For any player
k �= k0, the equilibrium strategies are those of games G1,G2, . . . ,GM . For player
k0 the equilibrium strategies are those in games G1,G2, . . . ,GM and arc l starting
from the root which gives the largest of the payoff values φk(1)

0
, φk(2)

0
, . . . , φk(M)

0
, that

is, l is selected as
φk(l)

0
= max

{
φk(1)

0
, φk(2)

0
, . . . , φk(M)

0

}
.

�

Before presenting a particular example, some comments are in order. First, the
uniqueness of the equilibrium is not guaranteed, since with identical payoff values
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all strategies are equilibrium strategies. Second, the proof suggests a simple compu-
tational method to find the equilibrium, which is known also as backward induction
similarly to the leader-follower games. Third, the theorem might fail if the graph
describing the game is not finite. Assume that in the last stage of the game each
player has infinitely many arcs to get to endpoints and the payoff values are there
0, 1

2 ,
2
3 , . . . ,

n−1
n , . . .. Then the players have no maximal payoff choices at these end-

points. So there is no equilibrium. Fourth, it is also possible that at certain nodes
the continuation of the game is random according to discrete probability distribu-
tions defined on the sets of arcs originating at these nodes. Such moves are called
“chance moves”. The theorem remains true in this more general case as well, when
the expected values of the payoffs replace the deterministic payoff values.

Example 9.8 Consider again the game introduced in the previous example, which is
shown again in Fig. 9.3 We indicated at each node the player assigned to it, and also
at each endpoint we have the payoff values of the three players. First we determine
the optimum last moves of the game. They start at nodes B1, B2, B3, B4, B5, and B6.
At B1, player three has two choices, moving up and down. If he moves up, then gets
2 and by moving down he would get 3. Since 3 > 2, from point B1 the game would
terminate on the arc moving down. The thicker arc shows this choice. At point B2,
player 3 would move up, since 2 > 1. At point B3, player 2 has the choice between
two arcs, where his payoff is 3 or 5, and since 5 > 3, the arc moving down is selected.
Similarly from point B4 player 2 would move up, at points B5 and B6 player 3 would
move up. By going back with one stage we get to points A1, A2 and A3. At point
A1 player 2 selects between two arcs, up and down. By moving up, he would get to
point B1, from where the game would continue on the arc pointing down resulting
in a payoff value 2. If player 2 would select moving down at point A1, then he would
reach point B2, where player 3 would move up resulting in a payoff value 1 for player
2. Since 2 > 1, at point A1 player 2 selects to move up. It is easy to show in a similar
way, that at point A2 player 3 moves down and at point A3 player 2 moves up. By
going back with one stage again, we reach the root R, where player 1 has 3 choices.
By moving up, he would arrive at point A1, where player 2 would choose to move
up to point B1, from where player 3 would move down to the endpoint giving payoff
value 2 to player 1. If he would move to point A2, then the game would continue
to point B4 and then up to the endpoint giving payoff value 1 to player 1. Similarly,
if player 1 would move down to point A3, then the game would continue to point
B5 and then up to the endpoint giving unit payoff value to player 1. Since the three
choices would result in payoffs 2, 1, 1 to player 1, he definitely would select to move
up to point A1. So the equilibrium path is R → A1 → B1 → E . The thick arcs show
the equilibrium choices of the players in all nodes of the game.

�
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1

2

3

2

3

3

2

2

3

3

• (1, 1, 2)

• (2, 2, 3)

• (3, 1, 2)

• (2, 2, 1)

• (4, 3, 2)

• (2, 5, 4)

• (1, 2, 5)

• (2, 1, 3)

• (1, 3, 3)

• (3, 2, 1)

• (4, 1, 3)

• (2, 1, 1)

Fig. 9.2 A finite tree game with three players

Table 9.1 Payoff table of
Example 9.8 �

�E
C

H S

I (a, b) (c, d)

O (α, β) (α, β)

Applying backward induction we always get an equilibrium, but there is no guar-
antee that all equilibria can be obtained by this way, as it is illustrated by the following
example.

Example 9.9 (Chain store and an enterpreneur) Assume that an enterpreneur is
planning to open a small business (e.g. selling hamburgers) next to a chain store sell-
ing similar items. After the enterpreneur starts advertising his business and becomes
ready to open, the chain store can become hard on the enterpreneur by lowering
its prices, giving special coupons in order to drive him out of the business, or can
be soft and let the enterpreneur do business without any difficulties from the chain
store. The response of the enterpreneur is to go into business or to get out of it by not
opening. A two-person game is defined, the enterpreneur (E) and the chain store (C)

are the players with strategy sets S1 = {I = in, O = out} for the enterpreneur and
S2 = {H = hard, S = so f t} for the chain store. The payoff functions are given in
Table9.1., where we assume that a < c, b < d (selection of H by C hurts both play-
ers), β > max{b, d} (the best payoff forC occurs if E is out), furthermore a < α < c
(getting out gives higher payoff to E than fighting with C , and gives lower payoff
than staying in business without the interference of C).



130 9 Repeated and Dynamic Games

1

2

3

2

3

3

2

2

3

3

• (1, 1, 2)

• (2, 2, 3)

• (3, 1, 2)

• (2, 2, 1)

• (4, 3, 2)

• (2, 5, 4)

• (1, 2, 5)

• (2, 1, 3)

• (1, 3, 3)

• (3, 2, 1)

• (4, 1, 3)

• (2, 1, 1)

R

A1

A2

A3

B1

B2

B3

B4

B5

B6

E

Fig. 9.3 Illustration of the backward induction

We can illustrate this game by a small tree shown in Fig. 9.4. At point A player
C can select between two arcs resulting in payoff values b and d. Since b < d, the
player will select to move down. At the root E has to choose between two arcs.
Moving up he would get α but by moving down to point A, the game will continue
on arc S giving payoff c to player E . Since c > α, player E should select arc I , so
the obtained equilibrium is (I, S). �

We can also determine the equilibria from Table9.1. The best responses of the
players are as follows:

RE (H) = 0, RE (S) = I

and

RC(I ) = S, RC(0) = {H ; S}

so we have two equilibria (0, H) and (I, S). The first equilibrium cannot be obtained
by using backward induction. �
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Fig. 9.4 Game tree of Example 9.9

Example 9.10 (Chess-game) The chess-game also satisfies the conditions of The-
orem9.1. The root of the game is the initial setting of the board with all 32 figures
in their original positions. The white player has the first choice from the possible 20
moves. Then the black player moves from the 20 possibilities, and after this move
the white player comes, and so on. This game is finite, since after repeating the same
standing on the board a certain number of time, the game terminates with a tie, and
there are only finitely many standing possibilities. So the chess-game has at least one
equilibrium. However the huge size of the graph describing all possible situations
and moves in a chess-game is so large, that finding an equilibrium is impossible even
by using modern high-speed computers. �

9.5 Extensive-Forms of Dynamic Games

In the previous section we examined dynamic games in which the dynamics and the
evolutions of the games were characterized by graphs. In the case of static games
the normal-form representation giving the players, sets of strategies and the payoff
function was sufficient to characterize and solve the games. If the game is dynamic,
then in general the dynamics of the game can be characterized by its extensive-form,
which specifies the followings:

1. The players of the game;
2. The time periods when each player has to move;
3. The possible choices of each player when he has the opportunity to move;
4. The payoff values received by each player for all possible combinations of the

moves the players can select during the game.

Without saying we have already used extensive-forms in the previous section.

Example 9.11 Consider the tree-game of Fig. 9.5. with two players, and at each
time when any of the players has to move, he has two choices, up (U ) and down
(D). At time 1, player 1 has the choice and then at time 2, player 2 can select the
next direction of move. Then the game terminates, and at each of the endpoints both
players receive payoff values. �
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1

2

2

t = 1 t = 2

U

D

A

B

(1, 1)

(− 1, 2)

(2, − 1)

(1, 1)

U

D

U

D

Fig. 9.5 Extensive form of Example 9.11

Example 9.12 In Fig. 9.3. we face a slightly different situation, where the players
are assigned to the different states of the game and not to different time periods.

With a small modification this problem can be solved as shown in Fig. 9.6, where
at t = 1 player 1 moves, at t = 2 player 2 moves, at t = 3 player 3 has the choice
and at t = 4 player 2 moves again. And at t = 5 the terminal nodes are reached. �

1

2

2

3

3

3

3

3

2

2

(1, 1, 2)

(2, 2, 3)

(3, 1, 2)

(2, 2, 1)

(4, 3, 2)

(2, 5, 4)

(1, 2, 5)

(2, 1, 3)

(1, 3, 3)

(3, 2, 1)

(4, 1, 3)

(2, 1, 1)

t = 1 t = 2 t = 3 t = 4 t = 5

Fig. 9.6 Modified graph of Example 9.3

The strategy of a player is a decision at each time period and each possible past
history of the game. In the graph representation it means that the player has to choose
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direction of continuation at each node the player is assigned to. There is a strong
relation between the normal and extensive forms of dynamic games.

Example 9.13 Wecan illustrate this in the case of the game shown in Fig. 9.5. Player
1 has only one node where he can choose between U and D. Player 2 however has
two nodes, A and B. At each node he has two choices, so he has altogether four
strategies (U,U ), (U, D), (D,U ) and (D, D) where the first component gives his
choice at point A and the second component is his choice at point B. The payoff
matrix is given in Table9.2. �

Table 9.2 Payoff matrix of game of Fig. 9.5

1 2

(U,U ) (U, D) (D,U ) (D, D)

U (1, 1) (1, 1) (−1, 2) (−1, 2)

D (2,−1) (1, 1) (2,−1) (1, 1)

Static games also can be represented in extensive form. For example, consider
the prisoner’s dilemma game introduced in Example2.1, where the payoff matrix
was given in Table2.1. The players move simultaneously, so when a player selects
strategy then he does not know the selected strategy of the other player, and if we
consider the game as a dynamic game when player 1 moves first and player 2 moves
next, then we get the extensive form shown in Fig. 9.7. When player 2 has to move,
he does not know the choice of player 1, so he does not know which is the point
(A or B) from which he has to continue moving forward. We can represent this
kind of uncertainty about previous moves in an extensive-form game by introducing
the notion of a player’s information set, which contains decision nodes such that the
player has themove at every node of the information set, but the player does not know
which node of the information set has been reached. The usual way of representating
information sets is by connecting its nodes by dotted lines. �

1

2

2

C

D

• (− 2,− 2)

• (− 10,− 1)

• (− 1,− 10)

• (− 5,− 5)

C

D

C

D

Fig. 9.7 Extensive form in the prisoner’s dilemma game
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9.6 Subgames and Subgame-Perfect Nash Equilibria

Consider an extensive form game, which might contain information sets. A subgame
in this extensive-form game is defined as follows. It starts at a decision node, DN ,
which is not the game’s first decision node and is a singleton information set. It
consists of all decision and terminal nodes which follow DN and does not cut any
information set, that is, if any node of an information set belongs to a subgame, then
all nodes of that information set also must belong to the subgame. Notice first that
the prisoner’s dilemma game has no subgame, since the only singleton information
set is the root of the graph, which is the game’s first decision node. In the case
of the game shown in Fig. 9.3. all points A1, A2, A3, B1, B2, B3, B4, B5, B6 can be
the starting points of subgames. For instance the subgame starting at point A2 has
the decision points A2, B3 and B4 and four terminal nodes. The motivations of the
above described conditions for a subgraph being a subgame are the requirements
that it should be analyzed on its own and the analysis has to be relevant to the
original game. If nodes of an information set with multiple nodes would be selected
as the initial decision nodes of a subgame, then there would be an uncertainty about
the starting move and so about the entire dynamism of the game. Every possible
continuation from the initial decision node of the subgame has to be contained in its
subgame and nodes which are not reachable from the initial point of the subgame
should not be contained in it.

Definition 9.1 A Nash equilibrium is called subgame perfect, if the equilibrium
strategies of the players form Nash equilibrium in every subgame.

We should not be confused between the outcome obtained by backward induction
and the notion of subgame perfect Nash equilibria. Consider first a leader-follower
game, in which backward induction gives the outcome

(
s∗
1 , R2(s∗

1 )
)
where R2 is the

best response function of player 2 and s∗
1 maximizes φ1

(
s1, R2(s1)

)
with φ1 being the

payoff function of player 1. If this game is considered as a dynamic game, then player
2 has to select strategy in every node where he has to decide. There are infinitely
many nodes, since s1 can usually have infinitely many values. So player 2 has to
specify his choice for all possible values of s1, so his strategy is s2 = R2(s1). So the
subgame perfect Nash equilibrium is

(
s∗
1 , R2(s1)

)
.



Chapter 10
Games Under Uncertainty

In the previous chapters we were dealing with games with complete information
and in the case of dynamic games perfect information was also assumed. Complete
information refers to games when every player knows the strategy sets and payoff
functions of all players, that is, all players have complete information about the game.
Perfect information refers to dynamic games when at each time period each player
knows the previous strategy selections of all players and the previous chance moves
if any. In short, complete information refers to the amount of information the players
have about the game and perfect information refers to the amount of information the
players have about the other players’ and their own previous moves (and about the
possible chance moves).

In the case of a static game we talk about incomplete information, if there is a lack
of information on the strategy set and/or the payoff function of at least one player.
Without losing generality we may assume uncertainty in only the payoff functions.
If the strategy set of any player is uncertain, then we can consider the union of all
possible strategy sets as the strategy set of the player and if at any realization of the
game a strategy of the union becomes infeasible, then we can define the associated
payoff value as −∞.

Before introducing the theory of Bayesian games some simple examples are
introduced.

Example 10.1 Consider a duopoly with price function p(s1 + s2) = a − (s1 + s2),
and assume that the cost function of firm 1 is C1(s1) = c1s1, and the cost function
of firm is 2 uncertain in the sense that it is C2(s2) = cLs2 with probability p and
C2(s2) = cHs2 with probability 1 − p. Firm 1 knows his own cost function and the
two possibilities for C2(s2) and the occurring probabilities. Firm 2 knows the cost
function of firm 1 and his actual choice between the two marginal costs cL and cH .
Both firms know the price function. This information structure is asymmetric, and
only player 1 faces uncertainty in the cost function of his opponent. This structure can
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be used in the case when player 2 is new in the market, or invented a new technology,
and firm1 is not sure that firm 2 selects the technologywith low or highmarginal cost.

Let’s next see how the two players think in this situation. Firm 2’s best strategy
choice is obtained by maximizing his profit

φ2 = s2(a − s1 − s2) − c2s2 (10.1)

where c2 is equal to either cL or cH . Assuming interior optimum,

s∗
2 (cL) = a − s∗

1 − cL
2

(10.2)

and

s∗
2 (cH ) = a − s∗

1 − cH
2

(10.3)

where s∗
1 is the optimum choice of firm 1, who’s profit can be given as the expectation

φ1 =
[(
a − s1 − s∗

2 (cL) − c1
)
s1

]
p +

[(
a − s1 − s∗

2 (cH ) − c1
)
s1

]
(1 − p). (10.4)

Assuming again interior optimum,

s∗
1 =

[
a − s∗

2 (cL) − c1
]
p + [

a − s∗
2 (cH ) − c1

]
(1 − p)

2
. (10.5)

Notice that equations (10.2), (10.3) and (10.5) give three equations for the three
unknowns, s∗

1 , s
∗
2 (cL) and s∗

2 (cH ) and the solutions are as follows:

s∗1 = a − 2c1 + pcL + (1 − p)cH
3

, (10.6)

s∗2 (cL ) = a + c1
3

− cL (p + 3) + (1 − p)cH
6

ands∗2 (cH ) = a + c1
3

− pcL + (4 − p)cH
6

(10.7)

�

Example 10.2 Consider again the earlier Example2.1 of the prisoner’s dilemma,
where each player had two strategies; cooperate with his partner (C) or defect (D).
The payoff matrix of Table2.1 is now modified as shown in Table10.1.
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Table 10.1 Modified payoff
matrix of Example2.1 �

�1
2

C D

C (0,−2) (−10,−1)

D (−1,−10) (−5,−5)

The only modification in the payoffs is in the case, when both players cooperate.
In the modified table we assume that in the lack of hard evidence player 1 can go
free, while player 2 gets the same sentence as in the original game. This can be the
situation if player 1 is an informer and his earlier services to the police are honored
by this favor. Player 1 knows that there is the possibility that his partner will have
certain emotional damage (like being afraid that the friends of his partner will take
a revenge on him) when defecting, which is equivalent to 6 additional years spent
in prison. However player 1 does not know for sure that it will happen or not. Here
is the uncertainty of the game, since there are two game types: Type I game has the
payoff table given in Table10.1, and Type II game has the payoff table shown in
Table10.2 with asymmetric information structure.

Table 10.2 Payoff matrix of
the Type II game �

�1
2

C D

C (0,−2) (−10,−7)

D (−1,−10) (−5,−11)

In the realization of the game player 2 knows the type of the game (his own
emotional condition), but it is unknown to player 1. He thinks that the probability
that the game is Type I is p, and the probability of the Type II game is 1 − p. Let’s
see how the players think in this situation. First player 2 is considered. If the game
is Type I, then D is his dominant strategy, and if the game is Type II, when C is his
dominant strategy. Therefore his strategy choice would be D or C in Type I or Type
II game:

s∗
2 (Type I) = D

s∗
2 (Type II) = C.

Then Player 1 can determine his expected payoffs as

E
(
φ1(C)

) = (−10)p + 0(1 − p) = −10pand E
(
φ1(D)

) = (−5)p + (−1)(1 − p) = −1 − 4p,

so his choice will be C if
−10p > −1 − 4p,

that is, when p < 1
6 ; his choice will be D if
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−1 − 4p > −10p,

that is, when p > 1
6 ; and the two strategies are equivalent if

−10p = −1 − 4p,

that is, when p = 1
6 . �

Example 10.3 Consider now a two-person game where both players have two pos-
sible strategies, s1, s2 and t1, t2. The payoff values depend on whether the players
are in weak or strong position. Let a1 and a2 denote the weak and strong posi-
tions of player 1, and b1 and b2 those of player 2. Therefore there are four different
game types: (a1, b1), (a1, b2), (a2, b1) and (a2, b2). Their occuring probabilities are
given in Table10.3. That is, p(a1, b1) = 0.4, p(a1, b2) = 0.1, p(a2, b1) = 0.2, and
p(a2, b2) = 0.3.

Table 10.3 Occurance probability values

b1 b2

a1 0.4 0.1

a2 0.2 0.3

There are different payoff matrices in the cases of the four game types, the payoff
matrices of player 1 are summarized in Table10.4. Assuming that all game types are
zero sum we know that φ2 = −φ1.

Table 10.4 Payoff matrices of player 1 in Example 10.3
1 \ 2 t1 t2

s1 2 5

s2 −1 20

(a1, b2)
1 \ 2 t1 t2

s1 −24 −36

s2 0 24

(a2, b1)
1 \ 2 t1 t2

s1 28 15

s2 40 4

(a2, b2)
1 \ 2 t1 t2

s1 12 20

s2 2 13

As in the previous examples, each player has to decide his strategy choices in the
case when he is weak and also in the case when he is strong. So each strategy of each
player consists of two numbers, (i, j) where i shows his strategy choice when he is
weak and j is the same when he is strong. Since both i and j can be either 1 or 2,
each player has 4 such strategies. The associated 4 × 4 payoff matrix is presented in
Table10.5.
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Table 10.5 Final payoff
matrix of player 1 in Example
10.3

�
�1
2

(1, 1) (1, 2) (2, 1) (2, 2)

(1, 1) 7.6 8.8 6.2 7.4

(1, 2) 7.0 9.1 1.0 3.1

(2, 1) 8.8 13.6 14.6 19.4

(2, 2) 8.2 13.9 9.4 15.1

To illustrate how these payoff values are obtained, consider first the strategy
selection(1, 2) and (1, 1). There are four game types. In the game (a1, b1) both
players play strategy 1 (s1 and t1), so the payoff of player 1 is 2. In game (a1, b2)
both players play again strategy 1 with payoff value −24 of player 1. If the game
is (a2, b1), then player 1 selects strategy s2 and player 2 chooses again strategy t1
giving 40 payoff value to player 1, and finally in game (a2, b2) player 1 selects s2
and player 2 chooses again t1 so the resulting payoff value is 2 for player 1. Since
from Table10.3 we know that the occuring probabilities of the four game types are
0.4, 0.1, 0.2 and 0.3, respectively, the expected payoff of player 1 becomes

0.4(2) + 0.1(−24) + 0.2(40) + 0.3(2) = 7.0.

In the case of strategy selection (1, 2) and (2, 1) the strategies of the players in
the four game types are (s1, t2), (s1, t1), (s2, t2) and (s2, t1), respectively, therefore
the associated payoff values for player 1 are 5,−24, 4 and 2, respectively, so the
expected payoff for player 1 is the following:

0.4(5) + 0.1(−24) + 0.2(4) + 0.3(2) = 1.0.

Notice that Table10.5 is the payoffmatrix of a zero-sumgame, so the pure strategy
equilibria are obtained bymatrix elements which are largest in their columns and also
smallest in their rows. The largest elements of the four columns are 8.8, 13.9, 14.6
and 19.4, and only 8.8 is the smallest in its row, therefore this matrix element gives
the unique pure strategy equilibrium: (2, 1) and (1, 1) as corresponding strategies.�

10.1 Static Bayesian Games

In the previous examples the uncertainty was in the type of at least one player which
was determined by the choice of marginal cost, or the payoff values were based
on emotional state, or being weak or strong. The uncertainty was characterized by
probability distributions defined on the random possibilities. This idea is generalized
in defining the normal forms of games with incomplete information also called Static
Bayesian games. Let N denote the number of players and assume that each player
k(1 � k � N ) can have a type tk ∈ Tk , where Tk is his type space. Let Sk denote the
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strategy set of player k. The information structure is the following. Each player k
knows his own type, and his payoff values φk(s1, . . . , sN ; tk) where s1, . . . , sN are
the strategy selections of the players, sl ∈ Sl for l = 1, 2, . . . , N , and tk is his type.
He also has belief, pk(t−k |tk), which is the conditional distribution (density or mass
function) of the joint types of the other players given his own type. In the Bayesian
game introduced byHarsanyi (1967) it is assumed that first the nature selects the type
vector t = (t1, . . . , tN )where ti ∈ Ti for all players i , and reveals ti to player i but not
to the other players. Then the players select strategies simultaneously and each player
k receives the corresponding payoff φk(s1, . . . , sN ; tk). In the case when a player has
private information about the types of some other players, then his belief is modified
as follows. Assume that player k knows the types of players i1, i2, . . . , il (including
himself) thenhis belief is givenby the conditional joint density function of the types of
all other players who’s types are unknown to player k : pk(t−{i1,i2,...,il }|ti1 , ti2 , . . . , til )
where t−{i1,i2,...,il } is the vectorwith components ti (i �= i1, i2, . . . , il). The conditional
densities pk(t−k |tk) have to be consistent with each other, therefore it is assumed that
the joint distribution of the types of all players is a public information, that is, it is
known by all players, and the conditional distributions are obtained by using the
theorem of Bayes. In the discrete case the values of the conditional mass functions
are obtained as

pk(t−k |tk) = p(t1, . . . , tN )∑
tk
p(t1, . . . , tN )

(10.8)

and in the continuous case the conditional probability density functions are given as

pk(t−k |tk) = p(t1, . . . , tN )∫
p(t1, . . . , tN )dtk

. (10.9)

In the description of a static Bayesian game we have to specify the sets of the
feasible strategies, the set of all possible types, the beliefs and the payoff functions
of all players, so the normal form representation is usually written as

{N ; S1, . . . , SN ; T1, . . . , TN ; p1, . . . , pN ;φ1, . . . , φN }.

Example 10.4 In the case of Example 10.1, firm 1 had only one type and firm 2 had
two possible types by selecting low or high marginal cost. Therefore T1 = {1} and
T2 = {cL , cH }, and the beliefs are given as

p1(cL |1) = p and p1(cH |1) = 1 − p,

furthermore
p2(1|cL) = p2(1|cH ) = 1.

In Example 10.2 we have a similar situation, since player 1 has only one type and
player 2 has two possible types, so the beliefs of the players are as follows:
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p1(Type I|1) = p, p1(Type II|1) = 1 − p

and
p2(1|Type I) = p2(1|Type II) = 1. �

Example 10.5 In Example 10.3 both players have two types, weak or strong. The
joint probability mass function is given in Table10.3, and therefore the conditional
beliefs of the players are computed by using Eq. (10.8):

p1(b1|a1) = 4

5
p1(b1|a2) = 2

5

p1(b2|a1) = 1

5
p1(b2|a2) = 3

5

and

p2(a1|b1) = 4

6
p2(a1|b2) = 1

4

p2(a2|b1) = 2

6
p2(a2|b2) = 3

4
. �

In order to introduce a general definition of the strategies of the players in a static
Bayesian game notice that it was a unique choice of players who had only one type,
and for players with multiple types it was an instruction of strategy selection in the
cases of all possible types. Assume now that for player k the set of all possible types
is Tk , then a strategy of this player is a function sk(tk) defined on Tk with range in
Sk meaning that if the type of the player is tk , then he selects strategy sk(tk). In the
case of Example 10.1 the equilibrium strategy for player 1 is unique but for player
2 it depends on his selection between cL and cH (Eqs. (10.6)–(10.7)). In the case
of Example 10.2, the strategy selection of player 1 is unique, but depends on the
probability value p:

s∗
1 (p) =

⎧
⎪⎨
⎪⎩

C if p < 1
6

D if p > 1
6

{C, D} if p = 1
6 .

The strategy choice of player 2 depends on the type of the game (which is actually
his type):

s∗
2 (Type I) = D and s∗

2 (Type II) = C.

In the case of Example 10.3 the type-dependent strategies with the associated
payoff values are presented in Table10.5.

The Bayesian payoff function of each player is defined as his expected payoff
value given his type, where expectation is taken with respect to the types of the other
players given their conditional distributions. In the discrete case it is given as
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∑
t−k

φk

(
s1(t1), . . . , sN (tN ); tk

)
pk(t−k |tk). (10.10)

Similarly, in the continuous case this expression is modified:

∫
φk

(
s1(t1), . . . , sN (tN ); tk

)
pk(t−k |tk)dt−k (10.11)

so instead of adding the products of the payoff values and their believed occuring
probabilities, the product of the payoff function and the associated probability density
function is integrated. So we know the players, their strategies and the Bayesian
payoff functions are defined, so we are ready to introduce Bayesian Nash equilibria.
Notice first that expectations (10.11) and (10.12) depend on the strategy selections
of all players and only on the type of player k. For the sake of simple notation let∏

k

(
s1, . . . , sk−1, sk(tk), sk+1, . . . , sN ; tk

)
denote expression (10.11) in the discrete

case and (10.12) in the continuous case.

Definition 10.1 ABayesianNash equilibrium is an N -tuple of strategies (s∗
1 , ..., s

∗
N )

such that for all players k and types tk ∈ Tk, s∗
k (tk) maximizes function∏

k

(
s∗
1 , . . . , s

∗
k−1, ak, s

∗
k+1, . . . , s

∗
N ; tk

)
where ak runs through Sk .

10.2 Dynamic Bayesian Games

In the previous parts of this book we have already introduced several equilibrium
concepts. In the case of static games with complete and perfect information the
Nash equilibrium served as the solution of the game. If a static game has incom-
plete information, then the uncertainty in the types of the players were modeled
by Bayesian methods and the resulted solution concept was Bayesian Nash equi-
librium. For dynamic games with complete information we introduced the concept
of subgame-perfect equilibria. If a dynamic game has incomplete information, then
Bayesian methodology has to be included in the solution concept, which is known as
perfect Bayesian equilibrium. In order to understand this concept completely, some
simple examples will be first introduced.

Example 10.6 Consider again the battle of the sexes game (Example 2.5). Its exten-
sive form representation is given in Fig. 10.1.
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W

W

F

M

(2, 1)

(0, 0)

(0, 0)

(1, 2)

F

M

F

M

Fig. 10.1 Extensive form of the battle of sexes game

The game has one information set consisting of the two possible choices of the
husband. We have two Nash equilibria, (F, F) and (M, M). Notice that both equi-
libria are subgame perfect, since the game has no subgame (nodes on information set
cannot be starting points of subgames). When the wife selects strategy she does not
know which equilibrium to be selected. However if she has a probabilistic feeling
about the husband’s choice, then her choice will be much easier. Assume the wife
believes that the husband will select F with 60% probability and M with 40%. If the
husband’s choice is F , then the wife’s best response is F giving her unit payoff value.
If the husband selects M , then her best response is M with 2 payoff value. Under the
uncertainty of the husband’s choice her expected payoff is 0.6(1) + 0.4(0) = 0.6 by
selecting F and 0.6(0) + 0.4(2) = 0.8 by selecting M . So the best move is M , since
it gives the larger expected payoff value. �

In this simple game we had and used two assumptions, which can be generalized
as follows:

(A) At each information set, the player who has to move must have beliefs about
the nodes in the information set which is reached by the play of the game. This
belief is a probability distribution defined on the nodes of the information set.
In Example 10.6 the distribution was p(F) = 0.6 and p(M) = 0.4. The prob-
ability values are between 0 and 1 and their sum equals unity.

(B) Based on the beliefs of the players, their strategies must be sequentially rational.
That is, at each information set the move of the player must be optimal given
his belief and the other players’ subsequent strategies.
Recall that the strategies of the players are complete plans of actions in every
possible situation that might occur during the realizations of the game. In the
above example the best response of the wife realized the optimality.
In computing the expected payoff for the wife in the previous example, not only
the outcome at the equilibrium was taken into account, it included outcomes
that do not occur in the case of an equilibrium. For example consider the (F, F)

equilibrium in which case the outcomes (M, F), (F, M) and (M, M) can never
occur. Therefore we need the following requirement:
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(C) At any information set on the equilibrium path, beliefs are determined by the
players’ equilibrium strategies and Bayes’ rule.
In the case of equilibrium (F, F) thewife’s beliefs should be therefore p(F) = 1
and p(M) = 0 by the players’ equilibrium strategies. Assume next that the
husband has a third option, staying in office and finish a project, and there is a
mixed equilibrium strategy of the husband; selecting F with probability p1, M
with p2 and stay in office with probability 1 − p1 − p2. In this case the wife’s
belief should be p(F) = p1

p1+p2
and p(M) = p2

p1+p2
.

The strategy of each player consists of his moves at any circumstances when he
has to move and also his beliefs at all information sets where he has to move.
It means that the players must have beliefs at all information sets where they
have to move and not only at information sets which belong to the equilibrium.
Therefore we require condition (D) as follows:

(D) Requirement (C) is assumed at all information sets where the player has tomove
regardless whether the information set belongs to the equilibrium or not.

Definition 10.2 A perfect Bayesian equilibrium consists of strategies and beliefs
satisfying conditions (A)–(D).

Example 10.7 (Signaling Games) Consider a dynamic game with two players, a
sender (S) and a receiver (R). The game is played in the following steps:
(i) Nature selects the type of S from a finite set of possible types, T = {t1, t2, . . . ,
tN }, according to a discrete probability distribution, which is known by both players.
If p(tn) denotes the probability of selecting tn , then 0 � p(tn) � 1 for all n, and∑N

n=1 p
(
tn

) = 1.
(ii) Player S observed his type tn , which is unknown to R, and then sends a message
mp to R from a set of feasible messages, M = {m1,m2, . . . ,mP}.
(iii) The message is observed by R and then he selects an action aq from a set of
feasible actions, A = {a1, a2, . . . , aQ}.
(iv) The payoffs received by the two players are

φS(tn,mp, aq) and φR(tn,mp, aq).

This game is clearly a dynamic game with incomplete information, since the type
of S is uncertain to R. In certain applications the sets T , M or A may be infinite, for
example an interval on the real line.

The strategy of S is a decision on the selected message as function of his type,
m(tn) (n = 1, 2, . . . , N ), since he has to choose message in all possible types, that
the nature selects for him. The strategy of R is his action depending on themessage he
receives from S, a(mp) (p = 1, 2, . . . , P). The total number of the feasible strategies
of S is PN since at any fixed tn he has P possible messages to choose from. Similarly
R has QP strategies, since at each message mp he has Q possible actions. In order
to see how the concept of perfect Bayesian equilibrium can be applied, we have to
revisit requirements (A)–(D) given before, and interpret them in this case.
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(A) After receiving a message mp, R must have a belief about the type of S, which
is a conditional probability

P(type of S is tn| received message ismp) (10.12)

which can be denoted by μ(tn|mp).
(B) Since both players have to be sequentially rational, we need to separate require-

ments for R and S as follows. For R, his action must maximize his expected
payoff given his beliefs:

a∗(mp) = argmax
aq∈A

∑
tn∈T

μ
(
tn|mp

)
φR

(
tn,mp, aq

)
. (10.13)

Here each possible outcome φR(tn,mp, aq) is multiplied by its believed occur-
ing probability, and these products are added up for all possible types of S. For
S, notice that he knows his type before sending the message, so for him the
game has complete information, and his choice is given as

m(tn) = arg max
mp∈M

φS
(
tn,mp, a

∗(mp)
)

(10.14)

where a∗(mp) is the strategy of R.
(C) Since only R has beliefs, this requirement has to be posed on R only. Let mp

be a given message received by S, and let Tp denote all possible types tn of S
such that m(tn) = mp, then the Bayes rule requires that

μ(tn|mp) = p(tn)∑
tr∈Tp

p
(
tr
) . (10.15)

In the denominator the probabilities of all types are added at which R could send
the message mp as his choice.

A pure strategy perfect Bayesian equilibrium is a pair of strategies
(
m∗(tn),

a∗(mp)
)
and beliefs μ(tn|mp) that satisfy the above requirements (A)–(C).

As an illustration of the requirements consider the game shown in Fig. 10.2.
The initial node (I ) is a chance-node, where nature decides on the continuation

of the game with p(t1) = p(t2) = 0.5. Depending on the initial chance-move S con-
tinues the game either from node A1 or from node A2. Then the game reaches one
of the nodes B1, B2, B3, B4. Player R makes the final move, either a1 or a2 and the
game terminates, giving the corresponding payoff values to the players. The payoff
values are indicated in the figure next to the endpoints. The first component gives the
payoff of S and the second component is the payoff of R. There are two information
sets of R containing nodes B1, B3 and B2, B4. Let the beliefs of R be denoted by

p(B1) = μ(t1|m1) = μ, p(B3) = μ(t2|m1) = 1 − μ,

p(B2) = μ(t1|m2) = μ, p(B4) = μ(t2|m2) = 1 − μ.
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Fig. 10.2 Extensive form of a signaling game

There are four possible types of equilibrium strategies of S:

(i) m(t1) = m(t2) =m1 (pooling on m1)

(ii) m(t1) = m(t2) =m2 (pooling on m2)

(iii) m(t1) = m1,m(t2) =m2 (separation with t1playing m1 and with t2 playing m2)

(iv) m(t1) = m2,m(t1) =m1 (separation with t1playing m2 and with t2 playing m1).

As an example we show that

m(t1) = m(t2) = m1, a(m1) = a1, a(m2) = a2, μ = 0.5, μ

is a perfect Bayesian equilibrium for μ � 2
3 .

Notice first that requirement (C) implies that μ = 0.5.
If message is m1, then the expected payoff of R with selecting a1 and a2 are as

follows:

E(φR) = 3μ + 4(1 − μ) = 4 − μ by selecting a1
E(φR) = 0μ + 1(1 − μ) = 1 − μ by selecting a2,

so the choice of R has to be a1.
If the message is m2, then the expected payoff of R is similarly,
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E(φR) = 1μ + 0(1 − μ) = μ by selecting a1
E(φR) = 0μ + 2(1 − μ) = 2 − 2μ by selecting a2.

Then R will choose a2, if 2 − 2μ � μ, that is, whenμ ≤ 2
3 . We can now examine

the payoff of S. If the message is m1, then his payoff is 1 or 2 in type t1 and type t2,
respectively. Assume next the case of messagem2, Player R selects a2, so the payoff
of S is 0 and 1 with types t1 and t2, respectively. Since (0, 1) < (1, 2), the sender
will not change his message from m1 to m2.

By a similar reasoning it is easy to show that there are no perfect Bayesian equi-
librium of the kinds (ii) and (iii). Finally we verify that

m(t1) = m2, m(t2) = m1, a(m1) = a(m2) = a1, μ = 0, μ = 1

is also a perfect Bayesian equilibrium.
Requirement (C) implies that μ = 0 and μ = 1, since in information set (B1, B3)

only node B3 is on the equilibrium path and in information set (B2, B4) only node B2

is on the equilibrium path. If the message is m1, then the payoff of R is as follows:

E(φR) = 3μ + 4(1 − μ) = 4 − μ = 4 if a1 is chosen

E(φR) = 0μ + 1(1 − μ) = 1 − μ = 1 if a2 is chosen,

so R will select a1 and the sender gets payoffs 1 and 2 in cases t1 and t2.
If the message is m2, then

E(φR) = 1μ + 0(1 − μ) = μ = 1 by choosing a1
E(φR) = 0μ + 2(1 − μ) =2 − 2μ = 0 by choosing a2,

so the choice of R is a1 giving payoff values 2 and 1 in types t1 and t2, respectively,
to S.

If sender changes m2 to m1 in t1, then receiver’s choice is a1 giving unit payoff to
sender, which is less than 2 what he would get by playing m2. If sender changes m1

to m2 in type t2, then receiver would play a1 again which would result in unit payoff
for sender, which is less than 2 he would get by keeping m1 in type t2. So the sender
does not have incentive to change his strategy. �

A nice detailed description of signaling games is given in Chapter 4 of Gibbons
(1992). We also mention that signaling games have many applications in economy,
including models in job market (Spence, 1973) investment and capital structure
(Myers & Majluf, 1984), monetary policy (Vickers, 1986) among others.



Chapter 11
Solutions Based on Characteristic
Functions

In the cases of noncooperative games the players cannot or do not want to make
binding agreements, so they select strategies independently of each other, and receive
the corresponding payoffs. The Nash equilibrium does not need agreement between
the players, since at an equilibrium situation the interest of each player is to keep the
equilibrium strategy, otherwise his payoff decreases. Each player considers his own
selfish interest without any consideration to the other players. As the next simple
example illustrates, the players can be able to increase their payoffs by cooperation.

Consider a duopoly with price function 10 − (x + y), where x and y are the
outputs of the firms with 0 � x, y � 5 and cost functions C1(x) = x and C2(y) = y.
The profit of firm 1 is clearly

φ1 = x(10 − x − y) − x

with best response

R1(y) = 9 − y

2
.

Similarly the best response of firm 2 is

R2(x) = 9 − x

2
,

so the Nash equilibrium is the solution of equations

x = 9 − y

2

y = 9 − x

2
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which is x = y = 3. The corresponding profit of both players is φ1(x, y) = φ2(x, y)

= 9.
If the players cooperate, then they are able tomaximize their overall profit in order

to gain extra profit in comparison to the case of the Nash equilibrium. Since

φ1 + φ2 = (x + y)(10 − x − y) − (x + y) = u(10 − u) − u = 9u − u2

with 0 � u = x + y � 10, the overall profit is maximal if u = 9
2 , and the corre-

sponding profit becomes 81
4 = 20.25. So by cooperating the players can increase

their overall profit from 18 to 20.25.
In discussing cooperation we have to make it clear what cooperation means and

what is the mechanism of cooperation. If cooperation consists of only information
sharing when the players inform the others about their strategy sets, payoff functions,
and all previous moves, then the game is not cooperative, it is still a noncooperative
game with complete and perfect information. Cooperation means a certain way of
coordinating their actions. Depending on the nature of the problem and the payoff
functions, several possibilities can be considered.

If the payoffs are given in the same unit (e.g. in dollars), then the most logical
way is for the players to form a grand coalition and maximize their overall payoff
and then distribute the obtained amount among each other. The central issue in such
cases is to find a fair and mutually acceptable distribution of this maximal amount. It
has to be acceptable by all players and also by all possible coalitions in order to avoid
some players to gang up against the others for even higher share. The strengths of
the players and all possible coalitions are usually characterized by the amount they
can receive without the help of the others. The concept of the characteristic function
realizes this idea. There are several ways of distributing the total payoff among the
players, we will introduce some of them later.

Consider an N -person game and let N = {1, 2, . . . , N } be the set of players. Any
subset of N is called a coalition. The characteristic function of the game is a real-
valued function defined for all possible coalitions of the players. That is, v : 2N �→ R,
where 2N denotes the set of all (2N ) possible subsets ofN. If S is a coalition then v(S)

can be interpreted as the amount of payoff coalition S can get without the cooperation
of the rest of the players. Clearly v(φ) = 0 and v(N) is the maximum of the sum of
the payoffs of all players. The most common general definition of v(S) is given as
follows. Let si denote the strategy of player i , si ∈ Si . The payoff of coalition S is
clearly

∑
i∈S φi

(
s1, . . . , sN

)
. If the rest of the players want to punish the members

of the coalition then their strategy selection is to minimize the overall payoff of the
coalition. And then the members of the coalition want to maximize their overall
payoff in this worst case scenario:

v(S) = max
si

i∈S

min
s j

j /∈S

∑

i∈S

φi

(
s1, . . . , sN

)
. (11.1)

As an illustration consider the following simple example.
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Example 11.1 Consider an oligopoly with three players, and let s1, s2, s3 denote
the outputs of the players. Assume that the capacity limit of each firm is 3, the price
function is 10 − s, where s = s1 + s2 + s3. It is also assumed that the firms have
identical cost functions, Ci (si ) = si + 1. In the case of three players we have 23 = 8
coalitions:

φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}.

Because of symmetry,

v
({1}) = v

({2}) = v
({3})

and

v
({1, 2}) = v

({1, 3}) = v
({2, 3}).

By using (11.1),

v
({1}) = max

s1
min
s2,s3

s1(10 − s1 − s2 − s3) − (s1 + 1).

The payoff of player 1 isminimal, if the other players can reduce the price asmuch
as possible which is reached if they produce maximum output levels: s2 = s3 = 3.
Then the minimal value of φ1 becomes

s1(4 − s1) − (s1 + 1) = −s21 + 3s1 − 1.

This is a concave parabola in s1, so the first order condition gives maximum:

−2s1 + 3 = 0

implying that s1 = 3
2 . Then the maximal value of φ1 under the minimality condition

with respect to s2 and s3 becomes

−s21 + 3s1 − 1 = −9

4
+ 9

2
− 1 = 5

4
= 1.25

so we have

v
({1}) = v

({2}) = v
({3}) = 5

4
.
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Similarly,

v
({1, 2}) =max

s1,s2
min

s3
(s1 + s2)(10 − s1 − s2 − s3) − (s1 + s2 + 2)

=max
u

min
s3

u(10 − u − s3) − (u + 2)

where we introduce the new variable u = s1 + s2 ∈ [0, 6]. The largest possible s3
value provides the minimum, so players 1 and 2 maximize

u(7 − u) − (u + 2) = −u2 + 6u − 2.

Maximum occurs at u = 3 and the corresponding function value is −9 + 18 −
2 = 7. So

v
({1, 2}) = v

({1, 3}) = v
({2, 3}) = 7.

And finally we compute the characteristic function value at the grand coalition:

v
({1, 2, 3}) = max

s1,s2,s3
(s1 + s2 + s3)(10 − s1 − s2 − s3) − (s1 + s2 + s3 + 3).

By introducing the new variable u = s1 + s2 + s3 ∈ [0, 9], the total payoff of the
players becomes

u(10 − u) − u − 3 = −u2 + 9u − 3.

Its maximum occurs at u = 9
2 with maximum function value

v
({1, 2, 3}) = −81

4
+ 81

2
− 3 = 69

4
= 17.25.

�
There are other alternative definitions of the characteristic function, and as the

different solution concepts are concerned it really does not matter how the charac-
teristic function is obtained. So an N -person cooperative game with characteristic
function v can be denoted as G = {N , v}. The following example shows a case when
the characteristic function is obtained by using the nature of the game without a
formal definition.

Example 11.2 Assume three children want to buy as much candy as possible. There
are three boxes available to purchase, their sizes are 500, 750 and 1000 g with prices
$7, $9 and $11. The three children have 6, 4 and 3 dollar budgets, respectively. Since
none of the children has enough money to buy any of the boxes alone, they have to
form coalitions to do so. Clearly

v
(
φ
) = v

({1}) = v
({2}) = v

({3}) = 0.
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Notice that v
({1, 2}) = 750, since children 1 and 2 have altogether 10 dollars

and they can buy the 9 dollar box. Similarly v
({1, 3}) = 750, v

({2, 3}) = 500 and
v
({1, 2, 3}) = 1000.

�

A game � = {N , v} is superadditive, if for all mutually exclusive S, T ⊆ N,

v(S ∪ T ) � v(S) + v(T ) (11.2)

meaning that themerging ofmutually exclusive coalitions cannotmake their situation
worse. By induction one can easily show that (11.2) can be generalized: with pairwise
mutually exclusive coalitions Sk (k = 1, 2, ..., K ),

v(S1 ∪ S2 · · · ∪ SK ) �
K∑

k=1

v(Sk). (11.3)

A game � = {N , v} is monotonic if S ⊇ T implies

v(S) � v(T )

which means that larger coalition cannot have worse situation than the smaller one.
The convexity of games is defined similarly to real functions by requiring the

monotonicity of the first differences. The first difference is now the contribution of
a player to a coalition,

di (S) =
{

v
(
S ∪ {i}) − v(S) if i /∈ S

v(S) − v
(
S − {i}) if i ∈ S

(11.4)

where S − {i} contains all elements of S except player i . A game � = {N , v} is
convex, if S ⊆ T implies that for all i ∈ N,

di (S) � di (T ) (11.5)

meaning that the values of coalitions increase more rapidly as the coalitions become
bigger.

A game �{N , v} is constant-sum, if for any coalition S ⊂ N,

v(S) + v(N − S) = v(N). (11.6)

As a special case the game is zero-sum if (11.6) holds with v(N) = 0.
Game �{N , v} is called rational if the grand coalition achieves at least as much

as the players would get together without cooperation:
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v(N) �
N∑

i=1

v
({i}). (11.7)

If this inequality is strict, then the game is essential, otherwise the game is called
inessential. Notice that in inessential games the players have no incentives to cooper-
ate. Therefore in the rest of this chapter we assume that the game under consideration
is essential.

In some applications the superadditive property is relaxed by assuming that for
all S ⊆ N,

v(N) � v(S) +
∑

i /∈S

v
({i}). (11.8)

In this case the game is weakly superadditive.
Sometimes it is useful to consider strategic equivalence of cooperative games,

since by proving an important property for one of the equivalent games it becomes
immediately valid for all of them. We say that games {N , v} and {N , v} are strate-
gically equivalent if there is a positive α and real β1, β2, . . . , βN such that for all
coalitions S,

v(S) = αv(S) +
∑

i∈S

βi . (11.9)

Strategically equivalent games form equivalence classes, that is, equivalence rela-
tion is reflective, symmetric and transitive. The equivalence of games can be also
useful to reduce complicated games to games of very simple structure such as (0,
1)—normalized games which satisfy the following properties:

v({i}) = 0 for all i ∈ N

v(N) = 1.
(11.10)

Clearly any (0, 1) normalized game is essential.

Theorem 11.1 Let � = (N , v) be an essential game, then any game equivalent to
� is also equivalent to a unique (0,1)—normalized game.

Proof If game � is equivalent to a (0, 1)—normalized game, then from (11.9),

αv
({i}) + βi = 0 and αv(N) +

N∑

i=1

βi = 1

which is a system of linear equations for unknowns α and βi (i = 1, 2, . . . , N ). The
unique solution is
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α = 1

v(N) − ∑N
i=1 v

({i}) and βi = −αv
({i}), (11.11)

where α > 0, since � is essential.

�

A superadditive (0, 1)—normalized game G = {N , v} is called simple, if for all
coalitions S, either v(S) = 0 or v(S) = 1. The coalitions with v(S) = 0 are called
losers and coalitions with v(S) = 1 are called winners.

Wementioned earlier that there are several definitions of the characteristic function
depending on how we interpret the term “without cooperation of the rest of the
players”. In definition (11.1) we assume that the rest of the players form a counter-
coalition and punish themembers of the coalition asmuch as they can. This concept is
called the maximin construction. We selected this construction because of two main
reasons. First, it is very often used in applications, and second, any superadditive
characteristic function can be obtained as a maximin construction of an N -person
cooperative game. So mathematically all superadditive characteristic functions can
be considered as maximin constructions (von Neumann and Morgenstern, 1994).

The main question is how the players divide the commonly earned payoff among
each other. We know that the maximum amount they can get and therefore can divide
among each other is v(N), so the set of all feasible payoff vectors is given as

{
x = (x1, . . . , xN )|

N∑

i=1

xi � v(N)
}

(11.12)

and the set of all efficient payoff vectors is

{
x = (x1, . . . , xN )|

N∑

i=1

xi = v(N)
}

(11.13)

where xi is the payoff given in the distribution to player i . The elements of (11.13)
are called preimputations. A payoff vector x is called individually rational if for all
players i, xi � v

({i}). If this condition is violated for any one of the players, then this
player will not agree with this obtained payoff, since he can get higher payoff v

({i})
without the help of the others. Therefore any payoff vector has to be individually
rational in order to be accepted by each individual player. If a preimputation is
individually rational, then it is called an imputation. For a particular game there are
usually many (sometimes infinitely many) imputations. Therefore in order to find a
mutually acceptable payoff vector solution, additional conditions should be assumed.
One of them is based on dominance of imputations.

We say that imputation x dominates imputation x on coalition S ⊆ N if

xi > xi for all i ∈ S
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and

∑

i∈S

xi � v(S).

This relation is denoted by x >S x . The first condition requires that all members
of coalition S get higher payoff in x than in x . The second condition makes it sure
that coalition S is able to get the higher payoffs to its members. We also say that
imputation x dominates impution x if there is a coalition S such that x >S x .

11.1 The Core

We have already explained that any reasonable payoff vector has to be individually
rational in order to be acceptable by all individual members. What about acceptance
by the possible coalitions? If there is a group S of players whowould get together less
than v(S), then they would revolt against this agreement, since by ganging up against
the others by forming a coalition, they could ensure at least v(S) for themselves.
Therefore it is an important extension of individual rationality that the payoff vector
x has to be rational to all possible coalitions, that is,

∑

i∈S

xi � v(S) for all S ⊆ N, S 	= N (11.14)

and

N∑

i=1

xi = v(N). (11.15)

The payoff vectors satisfying these conditions form the core of the game. The
first condition requires that x has to be rational to all possible coalitions including
the grand coalition N, however the players cannot distribute among each other more
than the maximum overall payoff they can get. This is represented in the second
condition. Notice that the core is always a convex set.

Example 11.3 We have seen in Example11.1 that in a three-firm oligopoly

v(φ) = 0, v
({1}) = v

({2}) = v
({3}) = 5

4
,

v
({1, 2}) = v

({1, 3}) = v
({2, 3}) = 7 and v

({1, 2, 3}) =69

4
.
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Therefore the core consists of all payoff vectors x = (x1, x2, x3) such that

x1, x2, x3 � 5

4
x1 + x2, x1 + x3, x2 + x3 � 7

x1 + x2 + x3 = 69

4
.

�

Example 11.4 In the case of the game introduced in Example11.2 we have seen
that

v(φ) = v
({1}) = v

({2}) = v
({3}) = 0

v
({1, 2}) = v

({1, 3}) = 750, v
({2, 3}) = 500 and v

({1, 2, 3}) = 1000.

So the core is formed by all payoff vectors such that

x1, x2, x3 � 0

x1 + x2, x1 + x3 � 750, x2 + x3 � 500

x1 + x2 + x3 = 1000.

�

The core of weakly superadditive games can be characterized by the following
result.

Theorem 11.2 Let G = {N , v} be a weakly superadditive game. Then its core con-
sists of all non-dominated imputations.

Proof It is sufficient to prove that for any coalition S, the following assumptions are
equivalent:

(A)
∑

i∈S

xi < v(S)

(B) there is an imputation x such that x >S x .

Assume first (A). Clearly S 	= φ and S 	= N. Introduce the notation


 =v(S) −
∑

i∈S

xi > 0
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and


 =v(N) − v(S) −
∑

i /∈S

v
({i}).

Since G is superadditive, 
 � 0, and let

xi =
{

xi + 

|S| if i ∈ S

v
({i}) + 


|N−S| if i /∈ S

where |S| is the number of players in coalition S, and |N − S| is the number of
players not belonging to S. Notice that

∑

i∈S

xi =
∑

i∈S

xi + v(S) −
∑

i∈S

xi = v(S)

and clearly xi > xi for all i ∈ S. Therefore x >S x . Assume next that (B) holds.
Then x >S x implies that

v(S) �
∑

i∈S

xi >
∑

i∈S

xi ,

so (A) holds.

�

The definition of the core implies that if x is an imputation from the core, then
there is no coalition which would want to change the outcome of the game, otherwise
the other playersmight “punish” them to get lower overall payoff v(S). Unfortunately
the core might have infinitely many imputations as in Examples11.3 and 11.4, and
the core might be empty as it is shown in the following result.

Theorem 11.3 Let G = {N , v} be an essential constant-sum game. Then its core is
empty.

Proof Assume an imputation x belongs to the core of the game. Then for all players
i ,

∑

j 	=i

x j ≥ v
(
N − {i})

and since the game is constant sum,

V
(
N − {i}) = v(N) − v

({i}).

Notice that for all players i ,
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∑

j 	=i

x j + v
({i}) � v

(
N − {i}) + v({i}) = v(N) =

∑

j 	=i

x j + xi

therefore xi � v
({i}), so

N∑

i=1

xi �
N∑

i=1

v
({i}),

and since G is essential,
N∑

i=1

v
({i}) < v(N).

Hence
N∑

i=1

xi < v(N),

which is impossible since x is an imputation.

�

Example 11.5 Consider a simple game G = {N , v}. A player i ∈ N has veto power
if

v
(
N − {i}) = 0.

In a simple game v(N) = 1, so without player i the others get zero overall profit.
Assume first that there is no veto player. Then for all i ∈ N, v

(
N − {i}) = 1, and

any imputation from the core would satisfy

xi � v
({i}) = 0

∑

j 	=i

x j � v
(
N − {i}) = 1

for all i, and

N∑

i=1

xi = v(N) = 1.

This is an obvious contradiction, so the core is empty.

Assume next that there is at least one veto player. Let S denote their set. Define
imputation x as
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xi � 0 for i ∈ S

xi = 0 for i /∈ S
∑

i∈S

xi = 1.

If T is a losing coalition, then (11.14) clearly holds for T . Let T be next a winning
coalition, then S ⊂ T by the superadditivity of G, since if a veto player j /∈ T , then
T ⊆ N − { j} and

0 = v
(
N − { j}) � v(T ) + v

(
N − { j} − T

)
� 1

being a contradiction. Then

∑

i∈T

xi �
∑

i∈S

xi = 1 = v(T )

implying that (11.14) also holds for winning coalitions. Thus x belongs to the core
of the game.

�
In Theorem11.2 the points of the core were characterized, in Theorem11.3 we

presented a class of games with empty core, and in Example11.5 the class of simple
games was examined giving conditions for empty and nonempty cores. The next
result shows that there is a large class of games, the core of which is necessarily
nonempty.

Theorem 11.4 Assume game G = {N , v} is convex. Then its core is nonempty.

Proof Let � be a permutation of the players and for each player i define

P�
i = {

j ∈ N|�( j) < �(i)
}

as the set of all players who precede player i in the ordering �. The marginal worth
of player i is given as

d�
i = v

(
P�

i ∪ {i}) − v(P�
i ),

which is the marginal contribution of player i to the coalition of his predecessors
with respect to ordering �. The marginal worth vector is defined as

d� = (d�
1 , d�

2 , . . . , d�
N ).

We will show that vector d� is an element of the core of game G.
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For each player i define Si = {�−1( j)| j = 1, 2, . . . , i} with S0 = φ. Then

P�
�−1(i) = {

j ∈ N|�( j) < i
} = Si−1

and so

d�
�−1(i) = v

(
Si−1 ∪ {

�−1(i)
}) − v(Si−1) = v(Si ) − v(Si−1)

and for all i ∈ N

∑

j∈Si

d�
j =

i∑

j=1

d�
�−1( j) =

i∑

j=1

(
v(Sj ) − v(Sj−1)

) = v(Si ) − v(S0) = v(Si ).

Since SN = N, we conclude that the sum of the d�
i values equals v(N).

Next we prove that d� is rational to all possible coalitions. Let now S 	= φ be
a coalition with s players, who are ordered in such a way that S = {i1, . . . , is} and
�(i1) < · · · < �(is). Define

∑
0 = φ and

∑
j = {i1, . . . , i j } for j = 1, 2, . . . , s.

The definition of d�
i implies that

∑
j−1 ⊂ P�

i j
, and from the convexity of game G

we have

v
(

P�
i j

∪
∑

j

)
− v(P�

i j
) � v

( ∑
j

)
− v

( ∑
j−1

)

and consequently

∑

j∈S

d�
j =

s∑

j=1

d�
i j

=
s∑

j=1

(
v
(
P�

i j
∪ {i j }

) − v(P�
i j

)
)

≥
s∑

j=1

(
v
( ∑

j

)
− v

( ∑
j−1

))
= v

( ∑
s

)
− v

( ∑
0

)
= v(S).

Hence d� is rational to all possible coalitions S.

�

Notice that the definition of the core of an N -person game, relations (11.14)–
(11.15) consists of 2N − 1 linear inequalities, so the existence of solutions can be
checked by the first phase of the simple method. In the case of multiple solutions
the choice of a special payoff vector can be determined by optimizing a mutually
accepted objective function (such as social welfare, environmental characteristics)
subject to constraints (11.14)–(11.15). Since these constraints define a compact set
in the N -dimensional vector space, any continuous objective function has optimal
solution.
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11.2 Stable Sets

We have seen that the core of an N -person gamemight be empty or might have many
imputations, and in many cases the selection of a unique imputation from the core
is problematic. An alternative solution concept is the von Neumann-Morgenstern
stable set, which can be defined as follows.

Let G = {N , v} be an N -person cooperative game, and let I denote the set of all
imputations of G. A subset J ⊂ I is called a stable set if
(A) there are no x , x ∈ J such that x dominates x (internal stability);
(B) if x /∈ J , then there is an x ∈ J such that x dominates x (external stability).

The existence of stable sets in general is very difficult mathematical problem,
since there are infinitely many imputations for an N -person game and conditions (A)
and (B) require the satisfaction of infinitely many relations. An interesting existence
theorem is the following.

Theorem 11.5 Let G = {N , v} be a simple game and let S be a minimal winning
coalition (such that v(S) = 1 and v(T ) = 0 for all T ⊂ S, T 	= S). Let J be the set
of all imputations x such that xi = 0 for all i /∈ S. Then J is a stable set.

Proof Notice first that if S = N, then J is clearly a stable set, so we may assume
that S 	= N.

We prove first internal stability. Assume that x, x ∈ J and x >C x for a coalition
C . Then xi > 0 for i ∈ C and

∑
i∈C xi � v(C). Since C has to be a subset of S and

S is a minimal winning coalition, C = S. Observe that

∑

j∈S

x j =
∑

j∈S

x j = 1,

since both x and x are imputations and for j /∈ S, x j = x j = 0. Therefore dominance
is impossible: x j > x j for all j ∈ S would imply that

∑
j∈S x j >

∑
j∈S x j .

We next prove external stability. Select an x /∈ J , then x j > 0 for some j /∈ S and
therefore


 = 1 −
∑

i∈S

xi > 0.

Define imputation x as follows:

xi =
{

xi + 

|N−S| if i ∈ S

0 if i /∈ S,
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then clearly xi > xi for i ∈ S and

∑

i∈S

xi =
∑

i∈S

xi +
(
1 −

∑

i∈S

xi

)
= 1 = v(S).

Hence x dominates x on S.

�
Wehave seen in Theorem11.1 that any essential game is equivalentwith a (0, 1)—

normalized game, and if this is also a simple game, then Theorem11.5 can be used
to show existence of stable sets and also to provide a stable set.

11.3 The Nucleolus

Consider a rational game G = {N , v} and let x be a payoff vector. For each coalition
S ⊆ N define excess of S on x as

e(S, x) = v(S) −
∑

j∈S

x j (11.16)

which can be interpreted as the measure of the dissatisfaction of coalition S if pay-
off vector x is offered to the players. Clearly every coalition wants to minimize
dissatisfaction, so a multiobjective optimization problem is obtained:

minimize v(S) −
∑

j∈S

x j (S ⊆ N)

subject to xi � v
({i}) (i = 1, 2, . . . , N )

N∑

i=1

xi = v(N) (11.17)

where we have 2N − 1 objective functions, since the number of nonempty coalitions
is 2N − 1.

Based on different solution concepts of solving multiobjective optimization prob-
lems several alternative versions of solving game G can be offered.

One way is a lexicographic approach in which the maximal complaint, the largest
excess, is minimized. If the solution is unique, then it is the final solution. Otherwise
minimize the second largest complaint with keeping the largest complaint on its
minimal level. If the solution is unique, then it is the final solution. Otherwise min-
imize the third largest complaint keeping the largest and second largest complaints
on their minimal levels and so on. The process terminates if either a unique optimum
is found in a step, or all complaints are already minimized. So in the first step we
solve problem
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minimize m1

subject to v(S) −
∑

j∈S

x j � m1 (S ⊆ N)

xi ≥ v
({i})(i = 1, 2, . . . ,N) (11.18)

N∑

i=1

xi = v(N).

Let m∗
1 be the optimum value of m1, which is obtained with a coalition S1. If solu-

tion is unique, then stop. Otherwise in the second step solve the following problem:

minimize m2

subject to v(S) −
∑

j∈S

x j � m2 (S ⊆ N, S 	= S1)

v(S1) −
∑

j∈S1

x j = m∗
1 (11.19)

xi � v
({i})(i = 1, 2, . . . ,N)

N∑

i=1

xi = v(N).

In general, in step k, the optimum problem is as follows:

minimize mk

subject to v(S) −
∑

j∈S

x j � mk (S ⊆ N, S 	= S1, S2, . . . , Sk−1)

v(Sl) −
∑

j∈Sl

x j = m∗
l (l = 1, 2, . . . , k − 1) (11.20)

xi ≥ v
({i})(i = 1, 2, . . . ,N)

N∑

i=1

xi = v(N).

It can be proved (Schmeidler, 1968) that this procedure produces a unique solution,
which is usually called the lexicographic nucleolus. Its computation can be very
laborious, since in the worst case scenario 2N − 1 optimum problems have to be
solved. However in practical cases much less number of steps are needed. Notice
that all optimum problems are linear, and at each step the objective function changes
and an inequality constraint becomes equality. This fact can be used when we start
from the final simplex table of the previous problem in solving the new optimum
problem.
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The solution of problem (11.18) shows if the core is empty or not. If m∗
1 > 0 then

it is impossible to find payoff vector such that for all coalitions,

v(S) −
∑

j∈S

x j � 0,

that is, the core is empty. Otherwise m∗
1 � 0, then with any solution of (11.18) and

all coalitions,

v(S) −
∑

j∈S

x j � m∗
1 � 0,

so payoff vector x belongs to the core. In other words, the lexicographic nucleolus
always belongs to the core as m∗

1 � 0. In this case it can be considered as a core
allocation rule.

Anotherwayof solvingproblem (11.17) is tominimize the varianceof the excesses
of the coalitions instead of putting down the largest access in order to flatten the excess
vector, as it was done in the previous model. So nowwe solve the following problem.

minimize
∑

S⊂N

(
e(S, x) − e(S, x)

)2

subject to xi � v
({i})(i = 1, 2, . . . , N ) (11.21)

N∑

i=1

xi = v(N)

where

e(S, x) = 1

(2N − 1)

∑

S�N

e(S, x)

is the average excess at x not counting the zero excess of the empty coalition. It can
be proved that

e(S, x) = 1

2N − 1

∑

S⊂N

(
v(S) −

∑

j∈S

x j

)
= 1

2N − 1

( ∑

S⊂N

v(S) − 2N−1v(N)
)

since eachplayer i canbe amember of 2N−1 different coalitions, and
∑N

i=1 xi = v(N).
It is easy to show that the objective function of (11.3) is quadratic with a positive
definite Hessian matrix which implies the uniqueness of the solution. The existence
of the optimum is implied by the facts that the feasible set is compact in R

N and
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the objective function is continuous. The unique solution is usually called the least-
square nucleolus (Ruiz et al., 1996).

Both solution concepts can bemodified by replacing the excesses of the coalitions
with their relative excesses,

re(S, x) = v(S) − ∑
j∈S x j

v(S)
(11.22)

in the optimization problems.
Assume finally that there are measures showing the relative importances of the

different coalitions in the game. Let α(S) be the importance measure for coalition
S. Then the objective function of problem (10.21) can be replaced by either

∑

S⊂N

α(S)
(
e(S, x) − e(S, x)

)2
(11.23)

(11.24)

or by

∑

S⊂N

α(S)
(
re(S, x) − re(S, x)

)2

depending on whether we wish to consider excesses or relative excesses.

11.4 The Shapley Values

The core and stable set gave only a set of solutions and the choice of themost appropri-
ate point of these sets raises further questions. The different kinds of nucleolus gave
one-point solutions, which might be different for different kinds of the nucleolus. In
this section another one-point solution is introduced based on the fair distribution
of the maximum achievable total payoff of the players. The concept is simple, each
player has to receive his expectedmarginal contribution to the different coalitions. So
if a player contributes less, then he has to get less from the “common basket”, and if
he contributes more, then he has to get more. In order to define expected contribution
we need a probability model. Assume that the players join each coalition one by one
until the coalition fills up. A given player’s contribution to the coalition occurs when
he is the last who joins the coalition. The question is now to find the probability that
this happens. Assume that the players are in random order. Let S be a coaliton with
s players. Player k is the last who joins S if he is in position s and all other members
of S are before him. The coalition S and the position of player k does not change, if
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the orders of the first s − 1 players and the N − s players behind player k change.
So the probability that player k is the last who joins S equals

(s − 1)!(N − s)!
N ! , (11.25)

since the N players have altogether N ! permutations. The marginal contribution of
player k to coalition S is given by (11.4), so if this player belongs to S, then

dk(S) = v(S) − v(S − {k}).

Therefore the expected marginal contribution of player k is given as

φk =
∑

k∈S⊆N

(s − 1)!(N − s)!
N ! dk(S), (11.26)

which is called the Shapley-value of player k (Shapley, 1953). The summation has to
be done only for those coalitions S which contain player k, since otherwisedk(S) = 0.

Example 11.6 In the case of N = 2 we have four possible coalitions, φ, {1}, {2},
and {1, 2}. In determining φ1 we have to consider coalitions {1} and {1, 2} only, since
the others do not contain player 1. Since these coalitions have 1 and 2 members, we
have

φ1 = (1 − 1)!(2 − 1)!
2!

(
v
({1}) − v(φ)

)
+ (2 − 1)!(2 − 2)!

2!
(

v
({1, 2}) − v

({2})
)

= 1

2

(
v
({1}) + v

({1, 2}) − v
({2})

)
.

Similarly,

φ2 = 1

2
v
({2}) + v

({1, 2}) − v
({1}).

Notice that φ1 + φ2 = v
({1, 2}).

�

Example 11.7 In the case of N = 3, we have eight possible coalitions, φ, {1}, {2},
{3}, {1, 2}, {1, 3}, {2, 3} and {1, 2, 3}. In computing φ1 we need to consider only
coalitions {1}, {1, 2}, {1, 3} and {1, 2, 3} with 1, 2, 2 and 3 members, respectively.
Therefore
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φ1 = (1 − 1)!(3 − 1)!
3!

(
v
({1}) − v(φ)

)
+ (2 − 1)!(3 − 2)!

3!
(

v
({1, 2}) − v

({2})
)

+ (2 − 1)!(3 − 2)!
3!

(
v
({1, 3}) − v

({3})
)

+ (3 − 1)!(3 − 3)!
3!

(
v
({1, 2, 3}) − v

({2, 3})
)

= 1

6

(
2v

({1}) + v
({1, 2}) − v

({2}) + v
({1, 3}) − v

({3}) + 2v
({1, 2, 3}) − 2v

({2, 3})
)
.

Similarly

φ2 = 1

6

(
2v

({2}) + v
({1, 2}) − v

({1}) + v
({2, 3}) − v

({3}) + 2v
({1, 2, 3}) − 2v

({1, 3})
)

and

φ3 = 1

6

(
2v

({3}) + v
({2, 3}) − v

({2}) + v
({1, 3}) − v

({1}) + 2v
({1, 2, 3}) − 2v

({1, 2})
)
.

Notice again that φ1 + φ2 + φ3 = v
({1, 2, 3}).

�

Shapley values (11.26) have several favorable properties.

Theorem 11.6 For any game G = {N , v},
(a)

∑N
k=1 φk = v(N);

and
(b) If G is superadditive, then φk ≥ v

({k}) for all players.

Proof (a) In any ordering of the players, (i1, i2, . . . , iN ) the total contribution of the
players to the consecutive coalitions is

[
v
({i1}

) − v(φ)
]

+
[
v
({i1, i2}

) − v
({i1}

)] + · · · +
[
v
({i1, . . . , iN }) − v

({i1, . . . , iN−1}
)]

= v
({i1, . . . , iN }) = v(N),

so its expectation also equals v(N).
(b) By the superadditivity of G we have

dk(S) = v(S) − v
(
S − {k}) � v

({k}),

for all coalitions S including player k. Since φk is the expectation of dk(S), it has to
be greater than or equal to v({k}).

�

This theorem implies that for any superadditive game the Shapley-values represent
an imputation.
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Theorem 11.7 The Shapley values are invariant under strategic equivalence and
permutations of the players.

Proof Consider first games G = {N , v} and G = {N , v} such that for all S ⊆ N,

v(S) = αv(S) +
∑

i∈S

βi .

Then

φk =
∑

S⊆N

(s − 1)!(N − s)!
N !

(
αv(S) − αv

(
S − {k}) + βk

)

= αφk + βk
∑

k∈S⊆N

(s − 1)!(N − s)!
N ! = αφk + βk

N∑

s=1

(s − 1)!(N − s)!
N !

(
N − 1
s − 1

)

= αφk + βk ,

since

(s − 1)!(N − s)!
N !

(
N − 1
s − 1

)

= (s − 1)!(N − s)!(N − 1)!
N !(s − 1)!(N − s)! = 1

N
.

Notice that all N ! permutations of the players were accounted for when the expec-
tation of the marginal contribution was determinated, which implies the invariance
of the Shapley-values under strategic equivalence and permutations of the players.

�

The first property implies that in determining the Shapley values the answers do
not depend an the selected units of the payoffs. The second property guarantees that
there is no discrimination among the players in which order the Shapley values are
computed.

Theorem 11.8 Let G = {N , v} and G = {N , v} be two games defined on the same
set of players, and let G∗ = {N , v + v}. Then for all players, φ∗

k = φk + φk , that is
the Shapley-values are additive.

Proof Since expectation is an additive operation, the Shapley-values are also addi-
tive.

�

The Shapley-values have the disadvantage that inmany cases it produces an unsta-
ble solution, since it does not belong necessarily to the core of the game. However
in a large class of games it cannot happen.
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Theorem 11.9 Let G = {N , v} be a convex game. Then the payoff vector (φ1, . . . ,

φN ) given by the Shapley-values belongs to the core of the game.

Proof From Theorem11.4 we know that the core of game G is nonempty, and in its
proof we also verified that the marginal worth vector belongs to the core with every
permutation � of the players. Notice first that (11.26) can be rewritten as

φk =
∑

S⊂N−{k}

s!(N − s − 1)!
N !

(
v
(
S ∪ {k}) − v(S)

)
, (11.27)

since for each S ⊂ N − {k} the number of permutations for which P�
k = S is s!(N −

s − 1)!. Here we use the notation of the proof of Theorem11.4. In addition, the
marginal worth of player k,

d�
k = v

(
P�

k ∪ {k}) − v(P�
k )

is of the form

v
(
S ∪ {k}) − v(S),

so we conclude that

φk = 1

N !
∑

�

d�
k (11.28)

where the summation is made for all permutations of the N players, that is, with
vector φ = (φ1, . . . , φN ),

φ = 1

N !
∑

�

d� (11.29)

showing that the payoff vector given by the Shapley-values is a convex linear combi-
nation of vectors d�. Since all vectors d� belong to the core and the core is convex,
all convex linear combinations of its elements also belong to it. Hence vector φ is an
element of the core.

�

This theorem can be interpreted as the Shapley-values can serve as an alternative
core allocation rule in addition to the nucleolus.
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11.5 The Kernel and the Bargaining Set

In the previous solution concepts it was always assumed that the players form a
grand coalition, the maximal obtained overall payoff goes into a common basket
which is then distributed among the players. The difference between the different
solution concepts is the way how this payoff distribution is conducted. So there was
no consideration to possible coalition formations among the players and any actual
bargaining process. In this section two new solution concepts will be introduced
which are based on coalition structures.

Consider a G = {N , v} rational game, and let

C = (C1, . . . , CM)

be a partition of the players into nonempty, disjoint coalitions, that is,

Ci ∩ C j 	= φ as i 	= j, and C1 ∪ C2 ∪ · · · ∪ CM = N.

The concept of imputations can be generalized by assuming that for a payoff
vector x ,

∑

i∈Ck

xi = v(Ck)(k = 1, 2, . . . , M) (11.30)

and for all players

xi � v
({i})(i = 1, 2, . . . , N ). (11.31)

Then (x, C) is called an individually rational payoff configuration (IRPC). Notice
that if C has only one coalitionN, then this concept reduces to that of an imputation.

The excess of a coalition S with respect to payoff vector x was defined in (11.16),
and define next the surplus of player i against player j in the following way:

si j (x) = max
{
e(S, x}|S ⊆ N, i ∈ S, j /∈ S

}
. (11.32)

Notice that it represents the largest amount player i can gain (or smallest amount
of loss) bywithdrawing from agreement x and joining a coalition without the consent
of player j .

Consider now an IRPC (x, C) and assume players i and j are in a coalition Ck .
We say that player i outweights player j if

si j (x) > s ji (x) and x j > v
({ j}). (11.33)

The first condition shows that player i has the larger incentive to depart from the
agreement than player j , so player i can gain more by the threat of excluding player
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j than vice versa. The second condition requires that the threat is realistic, since
player j could get lower payoff v

({ j}) then in the case of agreement x .
The kernel of a rational game with respect to a coalition structure C = (C1, . . . ,

CM) is the set of all IRPCs (x, C) such that there is no coalition Ck and players
i, j ∈ Ck with si j (x) > s ji (x). That is, in every coalition for each pair (i, j) of
players, si j (x) = s ji (x). In other words, all pairs of players in every coalition are in
equilibrium (Davis & Maschler, 1965).

Example 11.8 Consider a simple coalition structure

C = ({1}, {2}, . . . , {N })

where each player forms his own coalition. In this case we have a unique IRPC(x, C)

such that xk = v
({k}) for each player. This payoff vector belongs to the kernel, since

(11.31) clearly holds, and (11.30) is also true for all single member coalitions.

�

This example shows the nonemptiness of the kernel in this very special coalition
structure. For more complicated coalition structures to establish the nonemptiness of
the kernel is amuchmore difficult task. Instead of going into generalities we consider
the other extreme case when C = (N), that is, when the grand coalition is the only
coalition.

Theorem 11.10 Let G = {N , v} be a rational game with lexicographic nucleolus
x. Then IRPC (x,N) is in the kernel of the game.

Proof Assume in contrary to the assertion that (x,N) is not in the kernel of the game.
Then there are players i and j such that

si j (x) > s ji (x) and x j > v
({ j}).

Define


 = min
{1

2

(
si j (x) − s ji (x)

)
, x j − v

({ j})
}

(11.34)

and let payoff vector x ′ be defined as

x
′
k =

⎧
⎪⎨

⎪⎩

xi + 
 if k = i

x j − 
 if k = j

xk if k 	= i, j.

Then clearly x ′ is an imputation, 
 > 0 and x 	= x ′. For the sake of simplicity let
λi j be set of all coalitions containing i but not j and define

� = {
S|S ⊆ N, e(S, x) ≥ si j (x) and S /∈ λi j

}
. (11.35)
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We will next prove that

e(S, x ′)

{
= e(S, x) � si j (x) for S ∈ �

< si j (x) for S /∈ �.
(11.36)

Notice first that from (11.35),

e(S, x ′) =

⎧
⎪⎨

⎪⎩

e(S, x) + 
 if S ∈ λ j i

e(S, x) − 
 if S ∈ λi j

e(S, x) otherwise.

Assume that S ∈ �, then the definition of � implies that S /∈ λi j , furthermore

e(S, x) � si j (x) > s ji (x) = max
T ∈λ j i

e(T, x)

which would lead to contradiction if S ∈ λ j i , so we know that if S ∈ �, then S /∈ λi j

and S /∈ λ j i . Therefore the first case of (11.36) is shown.
Notice next that e(S, x ′) satisfies the following conditions:

(a) If S ∈ λi j , then

e(S, x ′) = e(S, x) − 
 � si j (x) − 
 < si j (x);

(b) If S ∈ λ j i , then

e(S, x ′) = e(S, x) + 
 � s ji (x) + 
 < si j (x);

(c) And if S /∈ �, S /∈ λi j , S /∈ λ j i , then

e(S, x ′) = e(S, x) < si j (x).

Select a coalition T ∈ λi j such that e(T, x) = si j (x), then T /∈ � and

max
S /∈�

e(S, x) = e(T, x) = si j (x),

since if S /∈ � then either e(S, x) < si j (x) or S ∈ λi j . Assume finally that the 2N

components of the excess vector are ordered in a nonincreasing order, and let e(1) ≥
e(2) ≥ · · · ≥ e(2N ) denote these components. Then there is an l � 1 such that

e(i)(x ′) = e(i)(x) for i = 1, 2, . . . , l
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and
e(l+1)(x ′) < si j (x) = e(l+1)(x)

implying that in the lexicographic order x ′ is less preferred than x , so x cannot be
the lexicographic nucleolus.

�

The Kernel requires that in every coalition each pair of players are in equilibrium,
that is, no one outweights the other. The other concept to be introduced in this section
is also based on a notion of stability, which is reached if any objection to a suggested
payoff vector can be met by a credible and powerful counterobjection.

Let (x, C) be an IRPC with C = (C1, . . . , CM) and assume that players i and
j belong to coalition Ck . In the bargaining process player i challenges (x, C) by
presenting an objection against player j as a pair (x ′, S) such that

(a) S ⊆ N, i ∈ S but j /∈ S;
(b) x ′ ∈ R

s a payoff vector for coalition S and
∑

i∈S x ′
i = v(S), where S has s

players;
(c) x ′

k > xk for all k ∈ S.

These conditions mean that player i offers to form a coalition without player j
such that all members of this coalition would receive higher payoff than in the case
of agreement payoff vector x .

If such a challenge is put forth, then player j might come up with a credible
counteroffer with a pair (x, T ) satisfying

(a) T ⊆ N, j ∈ T but i /∈ T ;
(b) x ∈ R

t a payoff vector for coalition T and
∑

i∈T xi = v(T ) where T has t play-
ers;

(c) xk � x ′
k for all k ∈ S ∩ T ;

and
(d) xl � xl for all l ∈ T − S.

In the counteroffer player j suggests to form a coalition T without player i such
that the players in S ∩ T receive at least as high payoffs as in the offer of player i
and players of T − S (who are in the proposed coalition of player j but not in that
of player i will get at least as good payoffs than in the case of the payoff vector x .

The bargaining set for the coalition structure C is the set of all IRPCs such that
every challenge against it can be counteroffered.

Theorem 11.11 Let G = (N , v) be a rational game. Then its kernel is contained in
the bargaining set.

Proof Assume that (x, C) is not in the bargaining set, then we will prove that it is
not in the kernel either. If (x, C) is not in the bargaining set, then player i can have
a challenge (x ′, S) against player j which cannot be counteroffered. Notice first that
x j > v

({ j}), since otherwise player j always can have a counteroffer (x, T ) with
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x j = v
({ j}) and j ∈ T . Assume thatU ⊆ S, then j /∈ U , since j /∈ S because (x ′, S)

is a challenge against player j . Clearly

si j (x) ≥ e(U, x).

Assume also that s ji (x) ≥ si j (x), then there is a coalition U ′ such that

e(U ′, x) = s ji (x) ≥ si j (x),

furthermore

∑

l∈U∩U ′
x ′

l =
∑

l∈U

x ′
l −

∑

l∈U\U ′
x ′

l = v(U ) −
∑

l∈U\U ′
x ′

l ≤ v(U ) −
∑

l∈U\U ′
xl

so

∑

l∈U∩U ′
(x ′

l − xl) � v(U ) −
∑

l∈U

xl � si j (x).

Therefore

∑

l∈U∩U ′
x ′

l +
∑

l∈U ′\U

xl � si j (x) +
∑

l∈U ′
xl = si j (x) + v(U ′) − e(U ′, x)

= si j (x) − s ji (x) + v(U ′) � v(U ′).

So player j has enough room to give the members of U ′ ∩ U and U ′ \ U as much
as needed for a valid counteroffer on U ′, which contradicts the assumption. Thus
s ji (x) < si j (x) showing that player i outweights j , consequently (x, C) is not in the
kernel.

�



Chapter 12
Partial Cooperation

Inmost concepts of solving cooperative games the players first form a grand coalition
maximizing their total payoff and they distribute this amount among themselves in
a way they feel fair.

The idea of partial cooperation was first introduced and explored by Cyert and
DeGroot (1973), in which instead of forming a grand coalition each player takes the
interest of the others into account. One way of doing so is the following. Consider
N players and let αkl ≤ 1 be the degree of cooperation of Player k towards Player
l(l �= k). Then each Player k replaces its profit φk with the linear combination

�k = φk +
∑

l �=k

αklφl (12.1)

and considers a new noncooperative game with unchanged strategy sets and payoff
function �1, �2, . . . , �N .

Notice that if all αkl = 0 then the original noncooperative game is obtained, and
if αkl = 1 for all k and l then the classical cooperation is derived when players have
the total profit as their common new payoff.

The concept of partial cooperation can be also derived from different models of
shareholding interlocks.

Joint ventures are modeled with payoff functions

�k =
⎛

⎝1 −
∑

l �=k

δlk

⎞

⎠ φk +
∑

l �=k

δklφl (12.2)

where φk is the profit function of player k (k = 1, 2, . . . , N ) and δkl is the ownership
interest of Player k in Player l (Reynolds and Snapp, 1982). Clearly 0 < δlk < 1 and∑
l

δlk < 1.
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Since themultiplier ofφk is positive,maximizing�k is equivalentwithmaximizing
(12.1) with

αkl = δkl

1 − ∑
l �=k

δlk
.

In the case of indirect shareholding (Flath, 1991, 1992) the payoff of player k satisfies
relation

�k = φk +
∑

l �=k

δkl�l (12.3)

in which player k maximizes the sum of its operating earnings φkand the returns
on equity holdings in the other players. Introducing vectors φ = (φk)and ψ = (ψk),
furthermore matrix D = (δkl) with δkk =0, relation (12.3) can be rewritten as

ψ = φ + Dψ (12.4)

or
ψ = (

I − D
)−1

φ,

where I is the N× N identity matrix. Since
∑
l �=k

δlk < 1, matrix
(
I − D

)
is diagonally

row-dominant with unit diagonal elements, therefore it is anM-matrix (Szidarovszky
et al., 2002). In addition,

(
I − D

)−1 = I + D + D2 + ....

where the right hand side is convergent. Letbkl denote the (k, l) element of
(
I − D

)−1
,

then clearly bkl ≥0, bkk ≥1 and

�k =
N∑

l=1

bklφl (12.5)

Maximizing this function is equivalent with maximizing (12.1) where for l �= k,
αkl = bkl

bkk
Net indirect shareholding (Merlone, 2001) considers the payoff functions

�k =
⎛

⎝1 −
∑

l �=k

δlk

⎞

⎠

⎛

⎝φk +
∑

l �=k

δkl�̄l

⎞

⎠ (12.6)

where the gross profits �̄k of the players are defined implicitly as

�̄k = φk +
∑

l �=k

δkl�̄l (12.7)
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This equation is identical to (12.3) so with the notation ψ̄ = (
�̄k

)
,

ψ̄ = (
I − D

)−1
φ

By introducing matrix

� = diag

⎛

⎝1 −
∑

l �=1

δl1, 1 −
∑

l �=2

δl2, ..., 1 −
∑

l �=n

δln

⎞

⎠

with (12.6) we have

� = �
[
φ + Dψ̄

]
= �

[
φ + D

(
I − D

)−1
φ
]

Notice that the multiplier of � can be rewritten as

[(
I − D

) (
I − D

)−1 + D
(
I − D

)−1
]
φ = (

I − D + D
) (

I − D
)−1

φ

implying that
� = �

(
I − D

)−1
φ

so for k = 1, 2, . . . , n,

ψk =
⎛

⎝1 −
∑

l �=k

δlk

⎞

⎠
n∑

l=1

bklφl (12.8)

which has the same form as (12.5) where bkl is replaced with

(
1 − ∑

l �=k
δlk

)
bkl .

Consider first a two-person zero-sum game with payoff functions φ1 and φ2 =
−φ1. Then from (12.1) we see that

ψ1 = φ1 + α12φ2 = φ1 + α12 (−φ1) = (1 − α12) φ1

and
ψ2 = φ2 + α21φ1 = φ2 + α21 (−φ2) = (1 − α21) φ2.

Maximizing ψ1and ψ2are equivalent with maximizing φ1and φ2. That is, in this
special case partial cooperation is equivalent with non-cooperation.
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12.1 Partial Cooperation in Oligopolies

Cournot oligopolieswere introduced in Example 3.15. There are N firms, the players.
The strategy of player k is a finite closed interval [0, Lk] where Lk can be interpreted

as a capacity limit. Let xk be the strategy (production level) of player k and s =
N∑
l=1

xl

the industry output. If p(s) is the unit price and Ck(xk) the production cost of player
k, then its profit is the difference of its revenue and cost:

φk (x1, x2, ..., xN ) = xk p (s) − Ck (xk) (12.9)

Assume that the players form partial cooperation, then player k wants to maximize
its payoff:

ψk (x1, ..., xN ) = (xk + Qk) p (xk + sk) − Ck (xk) −
∑

l �=k

αklCl (xl) (12.10)

where sk = ∑
l �=k

xl and Qk = ∑
l �=k

αkl xl .

Assume that functions p(s) and Ck(xk) (k = 1, 2, . . . , N ) are twice continuously
differentiable, furthermore

1. p′ (s) < 0
2. p′ (s) + (xk + Qk) p′′ (s) ≤ 0
3. p′ (s) − C ′′

k (xk) < 0

for all k and feasible values of the relevant variables. Notice that these assumptions
are the same as those presented in Example 3.15 when αkl ≡ 0.

Under these assumptions,

∂�k

∂xk
= p (xk + sk) + (xk + Qk) p

′ (xk + sk) − C ′
k (xk) (12.11)

and

∂2�k

∂x2k
= 2p′ (xk + sk) + (xk + Qk) p

′′ (xk + sk) − C ′′
k (xk) < 0 (12.12)

showing that �k is strictly concave in xk . Since xk ∈ [0, Lk] and �k is continuous in
xkwith any fixed values of sk and Qk , there is a unique best response of player k,
which can be written as

Rk (sk, Qk) =
⎧
⎨

⎩

0 if p (sk) + Qk p′ (sk) − C ′
k (0) ≤ 0

Lk if p (Lk + sk) + (Lk + Qk) p′ (Lk + sk) − C ′
k (Lk) ≥ 0

x̃k otherwise
(12.13)
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where x̃k is the unique solution of the following monotonic equation:

p (xk + sk) + (xk + Qk) p
′ (xk + sk) − C ′

k (xk) = 0 (12.14)

inside interval (0, Lk). If the best reponse is interior, then by implicit differ-
entiation with respect to sk and Qk , with assuming that x̄k = xk (sk) and x̃k =
xk (Qk)respectively, we have

p′ (s)
(
x̄ ′
k + 1

) + x̄ ′
k p

′ (s) + (x̄k + Qk) p
′′ (s)

(
x̄ ′
k + 1

) − C ′′
k (x̄k) x̄

′
k = 0

and

x̃ ′
k p

′ (s) +
(
x̃ ′

k + 1
)
p′ (x̃k + sk) + (x̃k + Qk) p

′′ (x̃k + sk) x̃
′
k − C ′′

k (x̃k) x̃
′
k = 0

implying that

∂

∂sk
Rk (sk, Qk) = − p′ + (xk + Qk) p′′

2p′ + (xk + Qk) p′′ − C ′′
k

∈ (−1, 0]

and
∂

∂Qk
Rk (sk, Qk) = − p′

2p′ + (xk + Qk) p′′ − C ′′
k

< 0.

A strategy vector (x∗
k ) is an equilibrium if and only if

0 ≤ x∗
k ≤ Lk

and

x∗
k = Rk

⎛

⎝
∑

l �=k

x∗
l ;

∑

l �=k

αkl x
∗
l

⎞

⎠ .

The existence of an equilibrium is guaranteed by Theorem5.4. (Nikaido-Isoda the-
orem). The uniqueness of equilibrium is not guaranteed in general, as the following
example illustrates.

Example 12.1 (Multiple equilibria) Consider a duopoly, N = 2, with price function
p (x1 + x2) = A − B (x1 + x2) , (A, B > 0) and cost functions ck (xk) = ckxk + dk .
The profit of player k towards its competitor is given as

φk = xk (A − B (x1 + x2)) − Ck(xk).

Let αk denote the degree of cooperation of player k. Then from (12.1) player k
uses the payoff

ψk = xk (A − Bxk − Bxl) − (ckxk + dk) + αk [xl (A − Bxk − Bxl) − (cl xl + dl)]



184 12 Partial Cooperation

where l �= k. Clearly

∂ψk

∂xk
= A − 2Bxk − Bxl − ck − αk Bxl = A − 2Bxk − B (1 + αk) xl − ck

showing that the best response of player k is the following:

Rk (xl , αk) =
{
0 ifA − B (1 + αk) xl − ck ≤ 0
− B(1+αk )xl

2B + A−ck
2B otherwise

(12.15)

and similarly for Player l,

Rl (xk, αl) =
{
0 ifA − B (1 + αl) xk − cl ≤ 0
− B(1+αl )xk

2B + A−cl
2B otherwise

(12.16)

when we ignore capacity limits. Since ∂�k
∂xk

strictly decreases, �k is strictly concave,
furthermore �k tends to −∞ as xk → ∞, the maximum has to be interior. The best
responses of the non-cooperative players can be obtained by selecting α1 = α2 = 0.
The best responses under partial cooperation are illustrated in Fig. 12.1.

Consider now the symmetric case, when c1 = c2 = c and α1 = α2 = 1. Then the
players have the common payoff function

ψk = (x1 + x2) (A − B (x1 + x2)) − c (x1 + x2) − d1 − d2 (12.17)

Fig. 12.1 Best responses (12.15) and (12.16)
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which is strictly concave in z = x1 + x2 with a unique optimum

x1 + x2 =
{
0 ifA − c ≤ 0
A−c
2B otherwise

So we have infinitely many (x1, x2) pairs:

{
x1 + x2

∣∣∣∣ 0 ≤ x1 ≤ A − c

2B
, x2 = A − c

2B
− x1

}

if A > c, otherwise x1 = x2 = 0 is the only equilibrium.
Similarly to the noncooperative case we can rewrite the best responses in the

N -player case as functions of s and Qk as

R̄k (s, Qk) =
⎧
⎨

⎩

0 if p (s) + Qk p′ (s) − C ′
k (0) ≤ 0

Lk if p (s) + (Lk + Qk) p′ (s) − C ′
k (Lk) ≥ 0

x̄k otherwise
(12.18)

where x̄k is the unique solution of equation

p (s) + (xk + Qk) p
′ (s) − C ′

k (xk) = 0 (12.19)

inside interval (0, Lk). Notice first that R̄k is constant in the first two segments with
zero partial derivatives with respect to s and Qk . Otherwise we consider x̄k as a
function of s and x̃k as a function of Qk . Implicitly differentiating equation (12.19)
with respect to s and Qk yields

p′ + x̄ ′
k p

′ + (x̄k + Qk) p
′′ − C ′′

k (x̄k) x̄
′
k = 0 (x̄k = xk (s))

and (
x̃ ′
k + 1

)
p′ − C ′′

k (x̃k) x̃
′
k = 0 (x̃k = xk (Qk))

showing that
∂ R̄k

∂s
= − p′ + (x̄k + Qk) p′′

p′ − C ′′
k (x̄k)

≤ 0 (12.20)

and
∂ R̄k

∂Qk
= − p′

p′ − C ′′
k (x̃k)

< 0 (12.21)

respectively.
Hence both ∂ R̄k

∂s and ∂ R̄k
∂Qk

are nonpositive everywhere, so R̄k decreases in both
variables s and Qk .

In order to compute the equilibrium we need to solve a system of (usually)
nonlinear algebraic equations:
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∑
l �=k

αkl R̄l (s, Ql) = Qk (k = 1, 2, ..., N )

n∑
k=1

R̄k (s, Qk) = s
(12.22)

for unknowns s, Q1, Q2, . . . , Qn .

12.2 Dependence on Model Parameters

First we show that by selecting partial cooperation the industry output decreases in
comparison to the noncooperative case. Let s(1) and s(2) be the industry outputs in
the partial cooperation and in the noncooperative cases, respectively. We can easily
prove that s(1) ≤ s(2). Assume on the contrary that s(1) > s(2). Then

s(1) =
N∑

k=1

R̄k
(
s(1), Q∗

k

) ≤
N∑

k=1

R̄k
(
s(1), 0

) ≤
N∑

k=1

R̄k
(
s(2), 0

) = s(2)

which is an obvious contradiction.
Next we can compare industry outputs in the cases of different degrees of coop-

eration between the players. For mathematical convenience assume that for all k,
αkl = αk meaning that each player treats all competitors equally.

In this case (12.18) can be rewritten as follows:

R̄k (s, αk) =
⎧
⎨

⎩

0 if p (s) + αksp′ (s) − C ′
k (0) ≤ 0

Lk if p (s) + (αk (s − Lk) + Lk) p′ (s) − C ′
k (Lk) ≥ 0

x̄∗
k otherwise

(12.23)

where x̄∗
k is the unique solution of equation

p (s) + (αks + (1 − αk) xk) p
′ (s) − C ′

k (xk) = 0 (12.24)

in interval (0, Lk). The left hand side is positive at xk = 0, negative at xk =
Lk , furthermore strictly decreases if we assume a slightly stronger version of
Assumption 3:

3’. (1 − αk) p′ (s) − C ′′
k (xk) < 0.

So there is a unique solution for xk . R̄k is constant in the first two segments of
(12.23) with zero partial derivatives, otherwise it can be obtained by using implicit
differentiation with respect to s and αk .

∂ R̄k

∂s
= − (1 + αk) p′ + (αks + (1 − αk) xk) p′′

(1 − αk) p′ − C ′′
k

≤ 0

if in addition to assumption 3’ we assume a weaker version of Assumption 2:



12.2 Dependence on Model Parameters 187

2’. (1 + αk) p′ + (αks + (1 − αk) xk) p′′ ≤ 0.
Similarly,

∂ R̄k

∂αk
= − (s − xk) p′

(1 − αk) p′ − C ′′
k

≤ 0.

Hence under assumptions 1, 2’ and 3’ we have the following result:

Theorem 12.1 Assume α
(1)
k ≤ α

(2)
k for all k, and let s(1) and s(2) denote industry

outputs in these cases. If conditions 1, 2’ and 3’ hold in both cases then s(1) ≥ s(2).

Proof Assume on the contrary that s(1) < s(2). Then

s(2) =
N∑

k=1

R̄k

(
s(2), α

(2)
k

)
≤

N∑

k=1

R̄k

(
s(2), α

(1)
k

)
≤

N∑

k=1

R̄k

(
s(1), α

(1)
k

)
= s(1)

which is an obvious contradiction.



Chapter 13
Conflict Resolution

In Chap.11 we assumed that the players were able to collect their payoff values
to a common basket, and this common payoff was distributed among the players.
There are however many cases when this is impossible. First, if the payoffs of the
different players are not transferable, second, if the players are unable to agree on
the mechanism of side payments. In this chapter solution concepts are introduced
in which each player earns his own payoff and receives it directly. In finding any
such solution a negotiation process has to take place before reaching an agreement. In
order to give sufficient incentive to the players to negotiate and to reach an agreement,
very unfavorable payoff values are assigned to the players in case if no agreement is
reached. Instead of negotiating on specific strategies, the subject of the negotiation is
the received payoff value of each player. For mathematical simplicity we will discuss
only two-person conflicts, and the general N -person case will be briefly discussed
later.

Let S1 and S2 be the strategy sets of players 1 and 2 respectively, and φ1 and φ2

their payoff functions. Then the payoff space is defined as

F = {
( f1, f2)| f1 = φ1(s1, s2), f2 = φ2(s1, s2), s1 ∈ S1, s2 = S2

}
, (13.1)

which consists of all pairs of the simultaneous payoff values of the players. If
f ∗ = ( f1∗, f2∗) denotes the disagreement point then it is assumed that there is a
point ( f1, f2) ∈ F such that f1 > f1∗ and f2 > f2∗ otherwise at least one player has
no incentive to negotiate.

A two-person conflict is defined by the pair (F, f ∗). The players can negotiate
on the simultaneous payoff values from the set

F∗ = {
( f1, f2)|( f1, f2) ∈ F, f1 � f1∗, f2 � f2∗

}
, (13.2)
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Fig. 13.1 Illustration of a conflict

since no player will accept an agreement which would give him less than the dis-
agreement payoff what he can get anyway without negotiation. It is also assumed
that set F is comprehensive, that is, if ( f1, f2) ∈ F and ( f1, f2) � ( f1, f2), then
( f1, f2) ∈ F . This property means that any payoff vector which is below a feasible
payoff vector is also feasible. The players can “waste” payoffs.

The Pareto frontier of set F∗ consists of all points ( f1, f2) ∈ F∗ such that there is
no point ( f1, f2) ∈ F∗ with f1 ≥ f1 and f2 ≥ f2 with strict inequality for at least one
of these relations. The Pareto frontier therefore consists of all points fromwhich none
of the payoffs can be increased without worthening the other payoff. The following
assumptions are usually made:

(i) F∗ is compact and convex in R2;
(ii) there is at least one f ∈ F∗ such that f > f ∗.

The payoffs are in conflict meaning that
(iii) if ( f1, f2) and ( f1, f2) are both in the Pareto frontier and f1 < f1, then f2 > f2.

Notice that if F∗ is not convex, then it can be made convex by allowing mixed
(probabilistic) strategies. The above conditions imply that F∗ is bounded by the
f1 = f1∗ vertical line, the f2 = f2∗ horizontal line and the Pareto frontier which is
the graph of a strictly decreasing, concave function f2 = g( f1). Figure13.1 shows
set F∗.

Introduce the notation f ∗
1 = g−1( f2∗) and f ∗

2 = g( f1∗), then player 1 can select
any payoff value from interval [ f1∗, f ∗

1 ] and similarly the choices of player 2 are the
points of interval [ f2∗, f ∗

2 ].
We can model this situation as a noncooperative game similarly to Example 3.1

when a fair division of a pie was discussed. The strategy sets of the players are
S1 = [ f1∗, f ∗

1 ] and S2 = [ f2∗, f ∗
2 ] with payoff functions

φ1( f1, f2) =
{
f1 if ( f1, f2) ∈ F∗

f1∗ otherwise
(13.3)
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and

φ2( f1, f2) =
{
f2 if ( f1, f2) ∈ F∗

f2∗ otherwise.
(13.4)

If the simultaneous payoff vector is feasible, then both players get their requests.
If it is not feasible, then the players get their disagreement payoffs.

Clearly any equilibrium has to be on the Pareto frontier, since otherwise at least
one of the players can increase his payoff without changing the payoff of the other
player. It is also clear, that all points of the Pareto frontier provide equilibrium. So
the number of equilibria equals the number of the points in the Pareto frontier, which
is infinity, and consequently non-cooperative game theory gives no instruction in
selecting a unique solution.

We can also model this problem as a single-person decision problem. Consider
now player 1, who believes that player 2 selects his strategy randomly from inter-
val [ f2∗, f ∗

2 ] accordingly to uniform distribution. This is a decision problem under
uncertainty, and player 1 wants to find his best choice by maximizing his expected
payoff. His payoff is f1, if ( f1, f2) ∈ F∗ which is the case if and only if f2 ≤ g( f1).
Otherwise his payoff is f1∗, the disagreement payoff. Therefore the expected payoff
of player 1 can be given as

f1
g( f1) − f2∗
f ∗
2 − f2∗

+ f1∗
(
1 − g( f1) − f2∗

f ∗
2 − f2∗

)

= ( f1 − f1∗)
(
g( f1) − f2∗

)

f ∗
2 − f2∗

+ f1∗. (13.5)

Since f ∗
2 − f2∗ is a positive constant and f1∗ is a constant, this function ismaximal

if and only if the product

( f1 − f1∗)( f2 − f2∗) (13.6)

is maximal on the Pareto frontier, which is the same as being maximal on F∗. This
product is known as the Nash-product. Interchanging the two players we get the
same optimum point for player 2, since (13.6) is symmetric in the players. So the
point ( f1, f2) ∈ F∗ which maximizes (13.6) is a common optimum for the players,
so it has to be accepted as the solution of the problem. This solution depends on
the assumption that both players consider the payoff choice problem as a decision
problem under uncertainty with uniform distributions.

In the rest of this chapter several solution concepts will be introduced which do
not rely on such heavy assumption than the previous concept.
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13.1 The Nash Bargaining Solution

Since any conflict is identified with the pair (F∗, f ∗), any solution concept has to
be defined on the set of all feasible pairs (F∗, f ∗) and should provide a simulta-
neous payoff vector. So any solution ψ maps all feasible pairs (F∗, f ∗) into two-
dimensional real vectors which belong to F∗. Nash was looking for a solution map-
ping ψ which satisfies certain fairness and reasonable conditions, which are called
the Nash axioms. They can be explained as follows :

1. ψ(F∗, f ∗) ∈ F∗ (feasibility)
2. ψ(F∗, f ∗) � f ∗ (rationality)
3. ψ(F∗, f ∗) has to be Pareto optimal (Pareto optimality)

4. If F
∗ ⊂ F∗ and ψ(F∗, f ∗) ∈ F

∗
, then ψ(F

∗
, f ∗) = ψ(F∗, f ∗) (independence

from unfavorable alternatives)
5. Assume T ( f1, f2) = (α1 f1 + β1, α2 f2 + β2) is a linear mapping such that

α1, α2 > 0, and let T (F∗) = {
T ( f1, f2)|( f1, f2) ∈ F∗} be the image of F∗ with

respect to mapping T . Then

ψ
(
T (F∗), T ( f ∗)

) = T
(
ψ(F∗, f ∗)

)

(independence from increasing linear transformations)
6. If a conflict is symmetric, that is, ( f1, f2) ∈ F∗ if and only if ( f2, f1) ∈ F∗, and

f1∗ = f2∗, then the two components of the solution vector ψ(F∗, f ∗) are equal
(symmetry).

Axiom 1 requires that the solution is feasible and axiom 2 ensures that none
of the players get less than in the case of disagreement. Pareto optimality is also
a reasonable assumption, otherwise at least one player could increase his payoff
without hurting the other player. Assumption 4 is a reformulation of a well known
property of optimum problems that the optimum does not change if the feasible set
is reduced and the optimum remains feasible. Assumption 5 can be interpreted as
changing the units in which the payoffs are computed should not alter the solution.
The last axiom 6 requires equal payoff to the players if there is no difference between
them in the conflict formulation (in set F∗ and disagreement payoff vector f ∗).

The main result of Nash (1953) is the following.

Theorem 13.1 There is a unique solution function ψ satisfying the Nash axioms
and it can be obtained as the unique optimal solution of problem

maximize ( f1 − f1∗)( f2 − f2∗)
subject to ( f1, f2) ∈ F∗.

(13.7)

Before a proof is presented we discuss a simple geometric fact, which will be
used in the proof. Consider the graph of function y = 1

xα in the first quadrant, and
let (x0, y0) be a point on the curve. Consider next the tangent line to the curve at this
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Fig. 13.2 A simple geometric fact

point. Then point (x0, y0) divides the segment of the tangent line in the first quadrant
into two parts, the ratio of their lengths is 1

α
.

Figure13.2 shows this situation. The slope of the tangent line is obtained by
differentiation: −αx−(α+1)

0 , so its equation is

y − y0 = −α

xα+1
0

(
x − x0

)
.

Its x-intersection is obtained by substituting y = 0, so

−y0 = −α

xα+1
0

(
x − x0

)

resulting in

xA = y0x
α+1
0

α
+ x0 = x0

α
+ x0 = x0

1 + α

α
.

The y-intersection is obtained by substituting x = 0 into the equation of the tan-
gent line,

yB = y0 + αx0
xα+1
0

= y0 + αy0 = (1 + α)y0.

So the coordinates of the x-intersection of the tangent line are A
(
x0

1+α
α

, 0
)
and

these of the y-intersection are B
(
0, (1 + α)y0

)
. Since

α

1 + α

(
x0
1 + α

α

) + 1

1 + α
(0) = x0

and
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α

1 + α
(0) + 1

1 + α

(
(1 + α)y0

) = y0,

point (x0, y0) divides the segment into two parts, the ratio of their lengths is 1
α
as

shown in the figure. In the special case, when α = 1, point (x0, y0) is in the middle
of the segment.

Now we are ready for the proof of Theorem 13.1.

Proof (a) Notice first that the solution of the optimum problem is unique since
optimizing its objective function is equivalent with maximizing its logarithm,
log( f1 − f1∗) + log( f2 − f2∗) which is strictly concave implying the uniqueness
of the optimal solution. It is also obvious that the optimal solution satisfies the Nash
axioms.

(b) We will next prove, that the solution satisfying the axioms is necessarily the
optimal solution of problem (13.7).We proceed in several steps as shown in Fig. 13.3.
We first assume that f ∗ = (0, 0).

Consider the triangle with vertices (0, 0), (1, 0) and (0, 1). Based on axioms 3
and 6, the solution has to be the midpoint between vertices (0, 1) and (1, 0) which
is the optimal solution of (12.7). Because of axiom 5, for any triangle of the first
quadrant with the horizontal axis and the vertical axis beeing its two sides the same
holds, that is, the solution is the midpoint of the third side. Assume next that F∗
is a convex closed set. The optimal solution T of (12.7) is obtained graphically by
finding a hyperbola f2 = C

f1
which is the tangent to the Pareto frontier of F∗ at point

T . The theorem of separating hyperplans guarantees that at this point they have a
common tangent line which creates a triangle with vertices A, B and (0, 0). Since
segment AB is the tangent to the hyperbola, point T is the midpoint of the segment,
so it is also the axiomatic solution. Since F∗ is a subset of the triangle, axiom 4
guarantees, that the axiomatic solution of problem (F∗, 0) is also point T , which
is also the optimal solution of problem (12.7). Axiom 5 implies that the statement
remains valid if point f ∗ is not zero, since shifting is a special linear transformation
with α1 = α2 = 1. �

Fig. 13.3 Steps of the proof of Theorem 13.1
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Example 13.1 In the case of Example 3.1, when we were looking for a fair share
of a pie, set F∗ were the triangle with vertices (0, 0), (1, 0) and (0, 1). The Nash
bargaining solution is clearly the midpoint between (1, 0) and (0, 1), which is ( 12 ,

1
2 )

meaning that equal shares is the solution. �

Example 13.2 Assume that F∗ is the convex set between the two axes and the
curve f2 = 1 − f 21 , and the disagreement point is (0, 0). Then problem (12.7) can
be written as

maximize f1 · f2
subject to 0 � f1, f2 � 1

f2 � 1 − f 21 .

At the optimum clearly f2 = 1 − f 21 , so this problem is equivalent with a single-
dimensional problem

maximize f1(1 − f 21 )

subject to 0 � f1 � 1.

Notice that at both f1 = 0 and f1 = 1 the objective function is zero and for all
f1 ∈ (0, 1) it is positive. So the optimum is interior. By differentiation,

d

d f1

(
f1(1 − f 21 )

) = 1 − 3 f 21 = 0

implying that

f1 =
√
1

3
=

√
3

3
and f2 = 1 − f 21 = 2

3
.

�

13.2 Alternative Solution Concepts

Several authors were criticizing the fairness and reality of the Nash axioms. The
symmetry assumption (Axiom 6) was one of them, since the negotiating partners not
always have the samenegotiating power, so their relative power has to be incorporated
into the solution concept. The Non-symmetric Nash bargaining solution is based on
this idea (Harsanyi & Selten, 1972). Select a positive vector α = (α1, α2) such that
α1 + α2 = 1, and let � denote the triangle with vertices (0, 0), (1, 0) and (0, 1). In
the case of the triangle � we require that the solution is the point on the segment
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connecting (0, 1) and (1, 0) which divides it to two parts, the ratio of their lengths is
α1
α2
.

Theorem 13.2 For any given positive vector α with α1 + α2 = 1 there is a unique
solution function ψ(F∗, f ∗) satisfying axioms 1 − 5 and it is the unique solution of
the optimum problem

maximize ( f1 − f1∗)α1( f2 − f2∗)α2

subject to ( f1, f2) ∈ F∗.
(13.8)

The proof of this theorem can be made along the lines of the proof of Theorem
13.1 with minor differences. Instead of a hyperbola the curve of function f2 = 1

f
α1/α2
1

has to be considered.

Example 13.3 Consider again the conflict examined in our previous example, in
which case problem (13.8) has the form

maximize f α1
1 f 1−α1

2

subject to 0 � f1, f2 � 1

f2 � 1 − f 21

which can be rewritten as

maximize f α1
1 (1 − f 21 )1−α1 ,

subject to 0 � f1 � 1.

By differentiation,

α1 f
α1−1
1 (1 − f 21 )1−α1 + f α1

1 (1 − α1)(1 − f 21 )−α1(−2 f1) = 0,

that is,

α1(1 − f 21 ) − 2 f 21 (1 − α1) = 0

implying that

f1 =
√

α1

2 − α1
and f2 = 1 − f 21 = 2 − 2α1

2 − α1
.

In the special symmetric case α1 = 1
2 , so f1 =

√
1
3 and f2 = 2

3 which is the same
result we obtained earlier. Notice also that if α1 = 0, then no power is given to player
1 and f1 = 0, f2 = 1 is the solution giving nothing to player 1. In the other extreme
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Fig. 13.4 Illustration of Axiom 4

case of α1 = 1, f1 = 1 and f2 = 0 giving nothing to player 2. It is also clear that f1
increases with increasing value of α1 and f2 decreases in the same time. �

By dropping Pareto optimality from the requirements we get the following inter-
esting result.

Theorem 13.3 There are exactly two solution functions satisfying axioms 1, 2, 4, 5
and 6. One is the Nash bargaining solution and the other is the disagreement payoff
vector.

The theorem can be proved similarly to Theorem 13.1, which can be left as an
exercise for interested readers.

Axiom 4 also has some problems. We can illustrate them in two simple examples.

Example 13.4 Consider Fig. 13.4, where F∗ is the region with disagreement vector
0, and the conflict is symmetric with vertices, 0, A and B and Nash bargaining
solution S = ( f1, f2). Assume that in a new conflict

F∗∗ = {
( f1, f2)|( f1, f2) ∈ F∗, f2 ≥ f2

}
,

and since F∗∗ ⊆ F∗ and solution ( f1, f2) remains feasible in reducing F∗ to F∗∗,
the solution of the reduced problem is also ( f1, f2). This is not fair to player 2,
since player 1 receives the highest possible payoff in F∗∗ and player 2 gets the worst
possible outcome from F∗∗. �

Example 13.5 Consider the conflict shown in Fig. 13.5, where the disagreement
point is 0 and F∗ is the convex hull of (0, 0), (1, 0),

(
1, 7

10

)
and (0, 1). Define

F∗∗ as the convex hull of (0, 0), (1, 0),
(
3
4 ,

3
4

)
and (0, 1), as shown in Fig. 13.5.

So we have two conflicts (F∗, 0) and (F∗∗, 0). Notice first that with any value
f1 ∈ (0, 1) player 2 gets higher payoff in conflict (F∗, 0) than in conflict (F∗∗, 0),
so he should expect higher payoff in the solution of conflict (F∗, 0) than in (F∗∗, 0).
However ψ(F∗, 0) = (

1, 7
10

)
and ψ(F∗∗, 0) = (

3
4 ,

3
4

)
conflicting the expectation of

player 2. �
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Fig. 13.5 Other illustration of Axiom 4

Kalai and Smorodinsky (1975) replaced Axiom 4 with the requirement of indi-
vidual monotonicity, which can be defined as follows. Consider a conflict (F, f ∗)
and define

f ∗
i = max

{
fi |( f1, f2) ∈ F∗}

and with fixed f j , let

f ∗
i F ( f j ) =

{
max{ fi |( f1, f2) ∈ F∗} if this set is nonempty

f ∗
i otherwise

for i = 1, 2 and j = 3 − i (the other player than i).
Monotonicity axiom: Consider two conflicts (F1, f ∗) and (F2, f ∗) and assume

that with a player j and all f j ∈ [ f j∗, f ∗
j ] for the other player i, f ∗

i F1
( f j ) � f ∗

i F2
( f j ).

Then at the solution ψi (F1, f ∗) � ψi (F2, f ∗).
Notice that f ∗

i Fl
( f j ) is the maximum payoff that player i can obtain in conflict

(Fl, f ∗)with given payoff f j of player j . This axiom requires that if for every payoff
level of player j the maximum feasible payoff that the other player can get increases,
then his payoff at the solution also must increase.

Theorem 13.4 There is a unique solution satisfying axioms 1–3, 5, 6 andmonotonic-
ity, which is the intersection of the Pareto frontier and the linear segment connecting
points f ∗ = ( f1∗, f2∗) and f ∗ = ( f ∗

1 , f ∗
2 ).

The proof of this theorem is very simple, so left as an exercise to the interested
readers. The solution is illustrated in Fig. 13.6, and is called the Kalai-Smorodinsky
solution. It is easy to see that it can be obtained by solving the following single-
dimensional equation

g( f1) − f2∗
f1 − f1∗

= f ∗
2 − f2∗
f ∗
1 − f1∗

. (13.9)
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Fig. 13.6 Illustration of the Kalai-Smorodinsky solution

The left hand side strictly decreases in f1. At f1 = f ∗
1 it is zero and as f1 → f1∗

it converges to infinity. Therefore there is a unique solution and it can be computed
by simple algorithms.

Example 13.6 Consider again the conflict examined earlier in Examples 13.2 and
13.3. In this case f1∗ = f2∗ = 0, f ∗

1 = f ∗
2 = 1, and g( f1) = 1 − f 21 , so Eq. (13.9)

simplifies as

1 − f 21
f1

= 1

1

that is,

f 21 + f1 − 1 = 0

implying that f1 =
√
5−1
2 ≈ 0.62 and f2 = 1 − (√

5−1
2

)2 = f1. �

The Equal loss principle of Chun (1988) equalizes the losses of the players from
the ideal point ( f ∗

1 , f ∗
2 ) by assuming that the players decrease their demands with

equal speed until a feasible solution is obtained. If the ideal point is feasible, then
clearly it is the solution. Otherwise the solution is obtained by solving the following
problem:

minimize v

subject to ( f ∗
1 − v, f ∗

2 − v) ∈ F∗

which can be rewritten as the single-variable nonlinear equation

f ∗
2 − g( f1) − f ∗

1 + f1 = 0. (13.10)
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Fig. 13.7 Illustration of the area monotonic solution

Notice that the left hand side strictly increases in f1. At f1 = f ∗
1 its value is

f ∗
2 − f2∗ > 0 and at f1 = f1∗ its value equals − f ∗

1 + f1∗ < 0. Therefore there is a
unique solution which can be obtained by simplemethods. The players get the payoff
vector

(
f1, g( f1)

)
.

Example 13.7 In the case of the previous example Eq. (13.10) has the special form

1 − (
1 − f 21

) − 1 + f1 = 0

that is,

f 21 + f1 − 1 = 0

leading to the same solution obtained in the previous example. �

We mention here that Chun (1988) has presented an axiomatic development of
this method and proved that the equal loss solution is the only solution satisfying his
axioms.

The Area monotonic solution of Anbarci (1993) is another alternative solution
concept for solving conflicts. Consider Fig. 13.7 where we added an arc starting
at the disagreement point. This arc represents simultaneous payoff vectors ( f1, f2)
such that the ratio of the increases of the players from the disagreement payoffs is
the same.

Any point under this arc gives player 1 a higher ratio and any point above the arc
gives higher ratio to player 2. In order to be fair, we are looking for an arc which
breaks up F∗ into two regions of equal area and the intersection of this arc and the
Pareto frontier is accepted as the solution for the conflict.

The area under the arc is

A1 = 1

2
( f1 − f1∗)

(
f2∗ + g( f1)

) +
∫ f ∗

1

f1

g( f )d f − ( f ∗
1 − f1∗) f2∗ (13.11)
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and the area above the arc is given as

A2 =
∫ f1

f1∗
g( f )d f − 1

2
( f1 − f1∗)

(
f2∗ + g( f1)

)
. (13.12)

Notice that A1 strictly decreases in f1 and A2 strictly increases, furthermore
A1( f1∗) = A, A1( f ∗

1 ) = 0, A2( f1∗) = 0 and A2( f ∗
1 ) = A where A is the total area

of F∗. Therefore there is a unique solution.

Example 13.8 In the case of the previous example

A1 = 1

2
( f1 − 0)

(
0 + 1 − f 21

) +
∫ 1

f1

(
1 − f 2

)
d f + (1 − 0)0

= 1

2
f1

(
1 − f 21

) + 2

3
− f1 + f 31

3
= − f 31

6
− f1

2
+ 2

3
.

The total area of F∗ is clearly

∫ 1

0

(
1 − f 2

)
d f =

[
f − f 3

3

]1

0
= 2

3

so we have to solve equation

− f 31
6

− f1
2

+ 2

3
= 1

3

that is,

f 31 + 3 f1 − 2 = 0

giving the solution

f1 ≈ 0.60 and f2 ≈ 1 − (0.60)2 = 0.64

where the value of f1 is computed by using the Newton method. �

The noncooperative foundations of the area monotonic solution is discussed in
Anbarci (1993); and an axiomatic development is given in Anbarci and Bigelow
(1994).

The methods discussed earlier in this section assumed equal players except the
non-symmetric Nash method. We can easily extend them to cases of unequal players
in the following way. Let α1 and α2 be the powers of the two players.

In the case of the Kalai-Smorodinsky solution we can replace the ideal point
by

(
α1 f ∗

1 , α2 f ∗
2

)
and use the method without any further changes. The equal loss

principle can bemodified to the principle of proportional losses in which the stronger
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player has to decrease his payoff slower than the weaker player resulting in the
optimum problem

minimize v

subject to
(
f ∗
1 − 1

α1
v, f ∗

2 − 1

α2
v
) ∈ F∗

which can be rewritten as the single-variable nonlinear equation

α2
(
f ∗
2 − g( f1)

) − α1( f
∗
1 − f1) = 0.

Notice that in the special case of α1 = α2, this problem reduces to (13.10). In the
case of the area monotonic solution A1 is replaced by α1A1 and A2 is replaced by
α2A2 so we have equation α1A1 − α2A2 = 0.

13.3 N-Person Conflicts

In generalizing the solution concepts and methods the feasible sets F, F∗ and the
assumptions are extended naturally. In the general case

F ={
( f1, . . . , fN )| fk = φk(s1, . . . , sN ) for all k with si ∈ Si for all i

}

and

F∗ ={
( f1, . . . , fN )|( f1, . . . , fN ) ∈ F and fk ≥ fk∗ for all k

}

where f ∗ = ( f1∗, . . . , fN∗) is the disagreement point. It is also assumed that F∗
is compact and convex, there is an f ∈ F∗ such that f > f ∗. In addition, F is

comprehensive and if ( f1, . . . , fN ) and ( f 1, . . . , f N ) are both on the Pareto frontier
and if fi > f i for an i , then there is a j with f j < f j .

The Nash axioms can be easily extended to the N -person case and problem (13.7)
can be generalized as

maximize �N
i=1( fi − fi∗)

subject to ( f1, . . . , fN ) ∈ F∗.

The Nonsymmetric Nash solution is obtained by solving the following problem:

maximize �N
i=1( fi − fi∗)αi

subject to ( f1, . . . , fN ) ∈ F∗ (13.13)

where α1, . . . , αN are the powers of the players.
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The ideal point f ∗ is given by coordinates,

f ∗
k = max

{
fk |( f1, . . . , fN ) ∈ F∗}.

The intersection of the Pareto frontier with the linear segment connecting points
f ∗ and f ∗ gives the Kalai-Smorodinsky solution.
The Equal loss principle for the N -person case requires the solution of the simple

optimization problem

minimize v

subject to
(
f ∗
1 − v, . . . , f ∗

N − v
) ∈ F∗ (13.14)

which is a clear extension of the 2-player case. The payoffs of the players are then
f ∗
1 − v, f ∗

2 − v, . . . , f ∗
N − v.

Another way to extend conflict resolution to the N -person case is to reduce the
problem to a sequence of 2-player conflicts. Let i1, . . . , iN be a permutation of the
players as an agenda. First players i1 and i2 resolve their conflict with all possible
strategies of the other players. After they reach an agreement, then they (as one
player) negotiate with player i3. After they get an agreement, then these three players
as one player negotiate with player i4, and so on. Clearly the outcome depends on
the selected agenda, what all players should accept.

There is also a large literature discussing different negotiation processes. Such an
example was earlier introduced in Example 9.6.



Chapter 14
Multiobjective Optimization

In the previous chapters we considered three types of cooperation of the players.
In the first case they formed a grand coalition, obtained the largest possible overall
payoff which is then divided among the players based on certain concepts of fairness.
In the second case each player individually took the interests of the other players into
account by maximizing a linear combination of the payoffs of all players including
itself. In the third case the players negotiate to reach a fair settlement. In many cases
a fourth way exists. The players agree in selecting a special person, the mediator,
who has the trust of the players and the right and duty of finding a final solution to
be given to them. After the mediator reaches his decision, all players are obliged to
accept it. In this case we have a single decision maker, who takes the interests of all
players into account simultaneously. If φ1, . . . , φN are the payoff functions of the
players and higher value is better for all, then the role of the mediator is to find a
satisfactory solution for the multiobjective optimization problem

maximize (φ1(s1, . . . , sN ), . . . , φN (s1, . . . , sN ))

subject to sk ∈ Sk (k = 1, 2, . . . , N )
(14.1)

where sk is the strategy of player k selected from his strategy set Sk for k =
1, 2, . . . , N . Themajor differences between single-objective andmultiobjective opti-
mization problems are given in Appendix G, where the main solution concept, the
meaning of nondominated (or Pareto optimal) solutions is outlined. Assuming that
the players as well as the mediator are rational, the solution has to be Pareto-optimal,
which is called nondominated in the multiobjective programming literature. Since
there are usuallymany (andoften infinitelymany) nondominated solutions, the choice
of a fair solution requires a precise notion of fairness from the mediator. Depending
on how fairness is defined several methods can be selected.

In the formulation 14.1 the feasible set is the Chartesian product S1 × S2 × · · · ×
SN assuming that the players select strategies independently from each other. Inmany
applications this is not the case, think about limited resources in an industry as an
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s1

s2

( 4
3
, 0)

(0, 4
3
) (1, 1)

(0, 0) 1

1

S

Fig. 14.1 Decision space in Example 13.1

example. In this case the set of simultaneous strategies is a subset of S1 × · · · × SN
and in this case we can assume that the decision vector is s = (s1, . . . , sN ) and the
constraint is s ∈ S.

Set S is the decision space containing the possible actions. The elements of S
show what the players can do. Introduce the payoff space

F =
{(

φ1(s), . . . , φN (s)
)|s ∈ S

}

which contains all feasible simultaneous payoffs. The elements of F show what the
players can get.

Example 14.1 Consider the following simple problem with two objectives

maximize s1 + s2, s1 − s2
subject to s1, s2 � 0

3s1 + s2 � 4

s1 + 3s2 � 4.

(14.2)

The decision space is shown in Fig. 14.1. In order to find the payoff space introduce
the payoff functions as new variables,

φ1 = s1 + s2 and φ2 = s1 − s2

from which we have

s1 = φ1 + φ2

2
and s2 = φ1 − φ2

2
.
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By substituting them into the constraints of (14.2) we get the constraints of the
payoff space F :

s1 � 0 ⇐⇒ φ1 + φ2

2
� 0 ⇐⇒ φ2 � −φ1

s2 � 0 ⇐⇒ φ1 − φ2

2
� 0 ⇐⇒ φ2 � φ1

3s1 + s2 � 4 ⇐⇒ 3(φ1 + φ2)

2
+ φ1 − φ2

2
� 4 ⇐⇒ 2φ1 + φ2 � 4

s1 + 3s2 � 4 ⇐⇒ φ1 + φ2

2
+ 3(φ1 − φ2)

2
� 4 ⇐⇒ 2φ1 − φ2 � 4.

Figure14.2 shows the feasible set of these constraints. The set of Pareto solutions
is the linear segment between points (2, 0) and

(
4
3 ,

4
3

)
. If all constraints are linear

and S is bounded, then there is an easier way to construct set F . Compute first the
images of the vertices of S with respect to the payoff functions, and then F is the
convex hull of the images. In our case

(0, 0) �→ (0 + 0, 0 − 0) = (0, 0)
(4
3
, 0

)
�→

(4
3

+ 0,
4

3
− 0

)
=

(4
3
,
4

3

)

(
0,

4

3

)
�→

(
0 + 4

3
, 0 − 4

3

)
=

(4
3
,−4

3

)

(1, 1) �→ (1 + 1, 1 − 1) = (2, 0).

As Fig. 14.2 shows these points are the vertices of F . �

14.1 Lexicographic Method

Assume that the mediator has ordinal preferences of the players meaning that player
i1 is the most important, i2 is the second most important, and so on, iN is the least
important player to him. So he wants to satisfy player i1 first as much as possible
without any consideration to the other players. If there is a unique optimum, then
it is the final solution. Otherwise the second most important player, i2 is satisfied
as much as possible keeping the payoff of player i1 at its optimal level. If a unique
optimum is obtained, then the process terminates, otherwise player i3 is satisfied as
much as possible, keeping the payoffs of players i1 and i2 at their optimal levels, and
so on. The process terminates if at a stage unique optimum is found or all payoffs
were already optimized. Mathematically this process can be formulated as follows:
Step 1:
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Fig. 14.2 Payoff space in Example 13.1

maximize φi1(s)

subject to s ∈ S
(14.3)

and let φ∗
i1
denote the optimal payoff value. If the optimal decision s is unique, then

process terminates and s is the final solution. Otherwise continue with next step.
Step 2:

maximize φi2(s)

subject to s ∈ S (14.4)

φi1(s) = φ∗
i1

and let φ∗
i2
denote the optimal payoff value. If the optimal decision s is unique, then

stop, otherwise continue with next step. In general, Step k is the following:

maximize φik (s)

subject to s ∈ S

φil (s) = φ∗
il (l = 1, 2, . . . , k − 1).

(14.5)

If there is a unique decision then it is the solution, otherwise increase the value
of k by 1 and go to the next step. Notice that the computation of the lexicographic
nucleolus was also based on the above concept.

Example 14.2 Consider the problem of the previous example. If φ1 is more impor-
tant than φ2, thenφ1 is maximized first. FromFigure14.2 we see thatφ1 is maximal at
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the point (2, 0)with payoff valuesφ1 = 2 andφ2 = 0, so the corresponding strategies
are

s1 = φ1 + φ2

2
= 1 and s2 = φ1 − φ2

2
= 1.

�

It is easy to prove that the lexicographic method always provides a weakly Pareto
optimal solution, but has a huge disadvantage. If at step k a unique optimum is
obtained, then the process terminates and payoffs of players ik+1, ik+2, . . . , iN are
not considered at all in the process, so they can have very unfavorable, and therefore
unacceptable values. One way to overcome this difficulty is to relax the optimality
requirements for payoffs φil (s), l = 1, 2, . . . , k − 1, in step k, so it is modified as
follows:

maximize φik (s)

subject to s ∈ S

φil (s) � φ∗
il − εil (l = 1, 2, . . . , k − 1)

(14.6)

where εil is a small relaxing constant.

Example 14.3 In the case of the previous example we already showed Step 1 result-
ing in φ∗

1 = 2. If ε1 = 0.5 is chosen, then in the second step we solve problem

maximize s1 − s2
subject to s1, s2 � 0

3s1 + s2 � 4

s1 + 3s2 � 4

s1 + s2 � 1.5.

The optimal solution is s1 = 1.25 and s2 = 0.25 with payoff values φ1 = 1.5 and
φ2 = 1. �

While the original version of the lexicographic method always provides Pareto
optimal solution, this modified version supplies only weakly Pareto optimal solu-
tions meaning that starting from the solution it is impossible to increase all payoffs
simultaneously.

Example 14.4 Fig. 14.3 shows such an example, where F is the unit square and
φ1 is the more important payoff. The maximal value of φ1 is clearly 1, and if the
optimality constraints for φ1 is relaxed by ε1, then the feasible set for Step 2 is
the shaded region. If φ2 is maximized there, then there are infinitely many optimal
solutions which form the linear segment connecting points (1 − ε1, 1) and (1, 1).
Only point (1, 1) is Pareto optimal, all others are only weakly Pareto optimal. �
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Fig. 14.3 Illustration of Example 14.4

It is also a disadvantage of the lexicographic method that Pareto optimal solutions
can be lost by the method selection, like in Example 14.1 only two Pareto optimal
solutions can be obtained.

14.2 The ε-Constraint Method

In this method the decision maker does not need to specify ordinal preferences of
the players, he needs only to specify the most important player. Then in order to
avoid very low payoffs to the other players, he requires all other payoff functions to
satisfy certain lower bound constraints. Mathematically this idea is modeled by the
following optimization problem:

maximize φk(s)

subject to s ∈ S (14.7)

φl(s) � εl (l �= k)

when player k is the most important to the decision maker.
It is easy to show that the solution is always weakly Pareto optimal.

Example 14.5 Consider again problem 14.2 and assume that φ1 is the more impor-
tant payoff, and ε2 = 1 is the lower bound for φ2. Then (14.7) is specialized as

maximize s1 + s2
subject to s1, s2 � 0

3s1 + s2 � 4

s1 + 3s2 � 4

s1 − s2 � 1.
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The optimal solution can be obtained easily by the graphical approach or by using
the simplex method: s1 = 1.25 and s2 = 0.25 with corresponding payoff φ1 = 1.5
and φ2 = 1. �

It is easy to prove that if s∗ is any Pareto optimal solution, then by the appropriate
choice of the lower bounds, s∗ can be obtained as an optimal solution of problem
(14.7). A such choice is given by selecting any k as most important player and
εl = φl(s∗) for l �= k. So no Pareto optimal solution is lost by selecting this method.

14.3 The Weighting Method

Thismethod assumes that the decisionmaker is able to define the relative importances
of the players by assigning importance weights c1, c2, . . . , cN such that all ci >

0 and
∑N

i=1 ci = 1. These weights can also be interpreted as what proportion of the
100%overall attention to the players is given to each player. This idea can bemodeled
by the single-objective optimization problem

maximize
N∑
i=1

ciφi (s)

subject to s ∈ S.

(14.8)

It is clear that any optimum solution is also Pareto optimal.

Example 14.6 Assume that in problem (14.2) the weights are c1 = c2 = 1
2 . Then

model (14.8) has the form

maximize
1

2

(
s1 + s2

) + 1

2

(
s1 − s2

) = s1

subject to s1, s2 � 0

3s1 + s2 � 4

s1 + 3s2 � 4.

From Fig. 14.1 we can see that the largest value of s1 occurs at point
(
4
3 , 0

)
so the

optimal solution is s1 = 4
3 and s2 = 0. �

In the cases of lexicographic and ε-constraintsmethods the payoff functions do not
need to be transferable since different payoff functions are not compared. However
the objective function of (14.8) can be interpreted only if the payoffs are transfer-
able. If the original payoffs are not transferable, then we have to replace them by
transformed payoff functions which become transferable. There are several ways to
do so. One way is to find the normalized payoff functions;
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φk(s) = φk(s) − φk∗
φ∗
k − φk∗

(14.9)

with

φ∗
k = max

{
φk |(φ1, . . . , φN ) ∈ F

}

and

φk∗ = min
{
φk |(φ1, . . . , φN ) ∈ F

}
.

Example 14.7 Consider again problem (14.2). From Fig. 14.2 we can see that

φ1∗ = 0, φ∗
1 = 2, φ2∗ = −4

3
and φ∗

2 = 4

3
,

so the normalized payoff functions are as follows:

φ1 = s1 + s2 − 0

2 − 0
= 1

2

(
s1 + s2

)
and φ2 = s1 − s2 + 4

3
4
3 + 4

3

= 3

8

(
s1 − s2

) + 1

2
.

By selecting equal weights, the objective function of (14.8) becomes

1

2

(1
2
(s1 + s2)

) + 1

2

(3
8
(s1 − s2) + 1

2

)

which is equivalent with maximizing function 7s1 + s2. The optimal solution on set
S is: s1 = 4

3 , s2 = 0. �

Another way is when the players can define satisfaction (or utility) functions
indicating their satisfaction with the different payoff values: ui

(
φi (s)

)
. Then the

objective function of (14.8) becomes

N∑
i=1

ciui
(
φi (s)

)
. (14.10)

The normalized payoff functions can also be interpreted as the application of a
special satisfaction function, which gives 0 satisfaction at the worst payoff value
φi∗, and 100% satisfaction at the best payoff value φ∗

i , and is linear between these
extreme values.

Example 14.8 By selecting the weighting method we might lose Pareto optimal
solutions which is illustrated in Fig. 14.4, where point A is Pareto optimal and cannot
be obtained as an optimal solution with positive weights. �
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Fig. 14.4 Illustration of Example 13.8

Notice that F is nonconvex in the above example, and as the following theorem
states, this problem cannot occur with convex payoff sets.

Theorem 14.1 Assume F is convex and s∗ ∈ S is Pareto optimal. Then there are
nonnegative weights such that s∗ is an optimal solution of problem (13.8).

Proof Let

F = {ψ ∈ R
N | there exists φ ∈ F such that ψ � φ}

which is also a convex set with the same Pareto optimal solutions as F . Define
φ∗ = (

φ1(s∗), . . . , φN (s∗)
)
which is clearly a boundary point. So the theorem of

separating hyperplanes guarantees the existence of an N -element vector c such that

cT (φ∗ − φ) � 0 for all φ ∈ F . (14.11)

We will next show that c � 0. Assume in contrary that ci < 0 for some i . Then
for arbitrary ε > 0 and vector ei = (0, . . . , 0, 1, 0, . . . , 0),

φ = φ∗ − εei ∈ F

where the i th component of ei is unity, all others are zeros.
Furthermore

cT (φ∗ − φ) = cT εei = εci < 0

which is a clear contradiction. So c � 0 and (14.11) implies that

cTφ∗ ≥ cTφ for all φ ∈ F

since F ⊆ F . �
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Fig. 14.5 Illustration of Example 14.9

Example 14.9 In Fig. 14.5 set F is given as

F = {
(φ1, φ2)|φ1 � 0, φ2 � 0, φ2

1 + φ2
2 � 1

}
,

where point (1, 0) is Pareto optimal. It can be obtained as an optimal solution of
problem (14.8) with only c2 = 0. �

Theorem 14.1 guarantees the existence of only nonnegative weights, as Example
14.9 shows, the positivity of the weights cannot be ensured in general. However
if F is a polyhedron and all payoff functions are linear, that is, if the constraints
defining the strategy sets and all payoffs are linear, then the positivity of the weights
is guaranteed (Szidarovszky et al., 1986).

14.4 Distance-Based Methods

The ideally best solution would give maximum payoffs to all players which is the
payoff vector φ∗ = (φ∗

1 , . . . , φ
∗
N ) with

φ∗
k = max

{
φk |(φ1, . . . , φN ) ∈ F

}

as before. However this ideal payoff vector is usually infeasible. A logical choice is
to find the payoff vector which is as close as possible to this ideal payoff vector. If
ρ(φ,ψ) is a distance function of N -element vectors, then this idea can be modeled
as

minimize ρ
(
φ(s), φ∗)

subject to s ∈ S.
(14.12)

In applications usually one of the Minkowski distances is used:
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ρp(φ,ψ) =
{ N∑

i=1

ci |φi − ψi |p
}1/p

with positive weights ci . If p = 1, then

ρ1(φ,ψ) =
N∑
i=1

ci |φi − ψi |,

if p = 2, then

ρ2(φ,ψ) =
{ N∑

i=1

ci |φi − ψi |2
}1/2

is the weighted Euclidean distance, and if p = ∞, then

ρ∞(φ,ψ) = max
i

{
ci |φi − ψi |

}

is the maximum distance.

Example 14.10 In the case of problem (14.2) the ideal point is φ∗ = (
2, 4

3

)
, so with

different choices of the distance function the objective function of (14.12) becomes:

ρ1(φ, φ∗) = c1|s1 + s2 − 2| + c2
∣∣s1 − s2 − 4

3

∣∣

with p = 1,

ρ2(φ, φ∗) =
{
c1|s1 + s2 − 2|2 + c2

∣∣s1 − s2 − 4

3

∣∣2}1/2

with p = 2, and with p = ∞,

ρ∞(φ, φ∗) = max
{
c1|s1 + s2 − 2|; c2

∣∣s1 − s2 − 4

3

∣∣}.

With c1 = c2 = 1
2 the optimal solutions are

s1 = 4

3
, s2 = 0 with p = 1;

s1 = 19

15
, s2 = 3

15
with p = 2

and
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s1 = 11

9
, s2 = 3

9
with p = ∞.

�

The geometric distance

ρG(φ,ψ) = �N
i=1

∣∣φi − ψi

∣∣ci

is also used in rare cases. This definition does not satisfy the usual requirements any
distance should satisfy. The distance of different vectors can be zero, such as with
c1 = c2 = 1,

ρ
(
(1, 0), (1, 2)

) = |1 − 1| · |0 − 2| = 0.

The triangle inequality can also be violated, as

ρ
(
(1, 0), (1, 2)

) + ρ
(
(1, 2), (2, 2)

) = 0 + 0 = 0 < ρ
(
(1, 0), (2, 2)

) = 1 · 2 = 2

with c1 = c2 = 1. Notice that maximizing geometric distance is the same as finding
the symmetric or the nonsymmetric Nash bargaining solution.

Another variant of distance basedmethods is to find the point with largest distance
from the ideally worst point φ∗ = (φ1∗, . . . , φN∗) with

φk∗ = min
{
φk |(φ1, . . . , φN ) ∈ F

}
.

In this case model (14.12) is modified as

maximize ρ
(
φ(s), φ∗

)

subject to s ∈ S.
(14.13)

Example 14.11 In the case of problem (14.2), φ∗ = (
0,− 4

3

)
, since φ

1∗ = 0 and

φ
2∗ = − 4

3 as seen in Fig. 14.2. In all distances ρ1, ρ2 and ρ∞ the same solution is
obtained:

s1 = 4

3
, s2 = 0.

�
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14.5 Direction-Based Methods

The worst possible payoff vector φ∗ is unacceptable to the players, so the payoff
values have to be improved in comparison to φ∗. So the decision maker selects a
positive vector v, as the direction of improvement and wants to increase the simulta-
neous payoff vector in the direction v as much as possible. Mathematically this idea
can be rewritten as model:

maximize t

subject to φ∗ + tv − φ(s) = 0 (14.14)

s ∈ S.

Example 14.12 In the case of problem (14.2)weknow thatφ∗ = (
0,− 4

3

)
. By select-

ing v = (1, 1), which improves the payoffs in equal speed, problem (14.14) can have
the form

maximize t

subject to s1, s2 � 0

3s1 + s2 � 4

s1 + 3s2 � 4

0 + t − s1 − s2 = 0

−4

3
+ t − s1 + s2 = 0

with optimal solution s1 = 10
9 , s2 = 6

9 and t = 10
9 . �

There is no guarantee that the obtained solution is Pareto optimal.

Example 14.13 Consider Fig. 14.6, where the arc starting at point φ∗ can improve
both payoffs in the direction v until point A, which is not Pareto optimal. �

Another variant of the method is the following. The ideal point φ∗ is usually
infeasible, so the decision maker has to decrease the payoffs in order to get feasible
solution. One way is to decrease the payoffs in a given direction v > 0 starting at φ∗
until a feasible solution is obtained:

minimize t

subject to φ∗ − tv − φ(s) = 0 (14.15)

s ∈ S.

Example 14.14 In the case of problem (14.2), φ∗ = (
2, 4

3

)
, so with v = (1, 1),

(14.15) can be rewritten as
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Fig. 14.6 Non-Pareto optimal solution

minimize t

subject to s1, s2 � 0

3s1 + s2 � 4

s1 + 3s2 � 4

2 − t − s1 − s2 = 0

4

3
− t − s1 + s2 = 0.

The optimal solution is s1 = 11
9 , s2 = 1

3 and t = 4
9 . �

Notice that problem (14.14) coincides with the Kalai-Smorodinsky solution if the
worst possible payoff vector is the disagreement point and the direction of improve-
ment is φ∗ − φ∗. Problem (14.15) is equivalent with the equal loss method, if v has
identical components.

14.6 Pareto Games

Up to this point we assumed that each player had only one payoff function, and the
players wanted to get for their payoff functions as high values as possible. However it
is often the case, when the players themselves face multiple objectives. In such cases
we have to combine game theoretical concepts with multiobjective optimization.

Let N denote the number of players. For Player k let Sk denote its strategy set
and let fk1 , fk2 , ..., fkik be its payoff functions. As we can see, this player usually has
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to consider the interior conflict between these payoff functions and in addition the
exterior conflict with the other players.

The most common way of resolving the interior conflict is the application of
multiobjective ideas when the multiple payoffs are comprised into a single payoff.
After all players resolve their interior conflicts, then each of them will have a single
payoff function and the Pareto game will become a usual N -person game.

Since the different payoff functions have different units and meanings, their com-
parisons need their transformations into a common measure such as satisfaction or
utility functions as shown in Sect. 14.3. The existence of equilibria of Pareto games
can be guaranteed in the following way. Assume for all players the strategy sets Sk
are nonempty, closed, convex and bounded subsets of finite dimensional Euclidean
spaces. Let φkdenote the single payoff function of Player k, as a result of resolv-
ing the conflict between its own payoffs. Let x1, x2, …, xN denote the strategies
of the players, xk ∈ Sk , for all k. Assume that φk (x1, x2, ..., xN ) is continuous as
an N -variable function and with fixed values of x j ( j �= k), φk is concave in xk .
Then the Nikaido-Isoda theorem (Theorem 5.4.) implies the existence of at least one
Nash-equilibrium.

These conditions hold if for all players k,

(a) φk = (
fk1, fk2, ..., fkik

)
is continuous as an ik variable function;

(b) all objective functions fk j (x1, x2, ..., xN ) are continuous as N -variable functions;
(c) φk = (

fk1 (x1, ..., xN ) , ..., fkik (x1, ..., xN )
)
is concave in xk in addition to

(d) Sk is a nonempty, closed convex and bounded subset of a finite dimensional
Euclidean space.

The most common way of constructing the single payoffs φk is the weighing
method, when after normalizing the original objectives to f̄k j , the players consider
the following function as their only payoff:

φk =
ik∑
j=1

ck j f̄k j (14.16)

where the coefficients ck j > 0 show the relative importance of the objectives. If all
fk jare continuous and concave in xk then the same holds for φk as well, so (a), (b)
and (c) are satisfied.

The following example will illustrate these ideas.

Example 14.15 (Duopoly) Consider a single product duopoly. The two firms are the
players who produce the same product and sell their outputs on a common market.
Let x1 and x2 be the produced amounts and assume that the entire outputs of the
firms are sold in the market.

Let p (x1 + x2) = A − B (x1 + x2) denote the price function and Ck (xk) =
ckxk + dk the production cost of firm k. The production process also produces pol-
lution, which is proportional to the production level, αk xk (αk > 0).

The firms consider their pollution emission in addition to profit because they care
about the public image influencing how the potential and actual customers view them.
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Therefore they abate a certain proportion of the pollution ykαk xk (0 ≤ yk ≤ 1),
what they want to maximize. However abating pollution is costly, say ykαk xk abated
pollution costs an amount ofβk (ykαk xk). So this additional cost has to be added to the
production cost. The strategy of Player k is (xk, yk)where xk ∈ [0, Lk] , yk ∈ [0, 1].
Here Lk is the production capacity limit of firm k, yk = 0 refers to no abatement and
yk = 1 means that all pollution is abated. The profit of this firm is

fk1 (x1, y1, x2, y2) = xk (A − B (x1 + x2)) − (ckxk + dk) − βk (ykαk xk) (14.17)

and the environmental objective is

fk2 (xk, yk) = αk xk yk − αl xl yl (l �= k) (14.18)

showing how better is this firm than the competitor in controlling the environment.
Let us first examine fk1. Its maximum occurs at xl =0 and yk =0, and minimum

occurs at xl = Ll and yk =1. If xl =0 and yk =0 then (14.17) is reduced to the
following:

xk (A − Bxk) − (ckxk + dk) .

Assuming interior optimum, the first order condition shows that

A − 2Bxk − ck = 0

or

xk = A − ck
2B

,

when

f max
kl = (A − ck)

2

4B
− dk .

Minimum of fk1 occurs at xl = Ll , and yk =1, when fk1 becomes

xk (A − Bxk − BLl) − (ckxk + dk) − βkαk xk .

Since this is a concave function, its minimum occurs at an endpoint of the domain
of xk . At xk =0 we have -dk , and at xk = Lk , we have

Lk (A − BLk − BLl) − (ck Lk + dk) − βkαk Lk

so
f min
k1 = min {−dk; Lk (A − BLk − BLl − ck − βkαk) − dk} .

So the normalised objective fk1 becomes (see (14.9))
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f̄k1 = fk1 − f min
k1

f max
k1 − f min

k1

.

It is easy to see that f max
k2 = αk Lk and f min

k2 = −αl Ll , so

f̄k2 = fk2 + αl Ll

αk Lk + αl Ll
.

Using the weighting method the resulting single payoff of Player k becomes

φk = ck1 f̄k1 + ck2 f̄k2 = ck1
fk1 − f min

k1

f max
k1 − f min

k1

+ ck2
fk2 + αl Ll

αk Lk + αl Ll
= C̄k1 fk1 + C̄k2 fk2 + D̄k

with
C̄k1 = ck1

f max
k1 − f min

k1

; C̄k2 = ck2
αk Lk + αl Ll

and

D̄k = − ck1 f min
k1

f max
k1 − f min

k1

+ ck2αl Ll

αk Lk + αl Ll

Similarly for Player l(l �= k),

φl = C̄l1 fl1 + C̄l2 fl2 + D̄l

where C̄l1,C̄l2 and D̄l are analogous to C̄k1,C̄k2 and D̄k .
So the problem is reduced to a 2-person game with strategy sets

S1 = {(x1, y1) |0 ≤ x1 ≤ L1, 0 ≤ y1 ≤ 1 }, S2 = {(x2, y2) |0 ≤ x2 ≤ L2, 0 ≤ y2 ≤ 1 }
and payoff functions φ1 and φ2.



Chapter 15
Social Choice

There are decision problems where the consequences of the choices of the differ-
ent alternatives cannot be quantified. This is the case, for example, in considering
environmental issues like esthetics. In such cases no numerical payoff functions are
given, only the rankings of the alternatives are possible.

Let M denote the number of alternatives which are ranked by the N players by
rankings 1, 2, . . . ,M , where 1 is given to the most preferred alternative, 2 is given
to the second most preferred alternative, and so on, and finally M is given to the
least preferred alternative. So the data are given in an N × M matrix, where the
rows correspond to the players and the columns to the alternatives. Each row is a
permutation of the numbers 1, 2, . . . ,M .

Example 15.1 Assume N = 5 and M = 4. A possible data set is given in
Table15.1. �

There is no alternative which is best for all players, so instead of looking for
an overall best solution a mutually acceptable solution has to be found. Depending
on the meaning of “mutual acceptance” several methods can be offered (Taylor,
1995; Bonner, 1986). In this chapter some of the most frequently used methods are
introduced and used.

15.1 Methods with Symmetric Players

Notice that in Table15.1 the players are considered equal, no ordering or importance
is given among the players.

The most simple method is Plurality voting, in which each alternative gets as
many votes as the number of players who gave best ranking 1 to it. The alternative
with the most votes is the solution. In the case of Example 15.1, alternatives 1, 3 and
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Table 15.1 Data of Example 15.1

Alternatives

1 2 3 4

Player 1 2 1 3 4

Player 2 1 3 2 4

Player 3 4 1 3 2

Player 4 2 4 1 3

Player 5 4 3 2 1

4 received 1 vote, while alternative 2 got 2 votes, so it is the solution. The formulation
of this method is as follows.

Let ri j denote the (i, j) element of the data matrix, when ri j denotes the ranking
of alternative j by player i and define

�i j =
{
1 if ri j = 1

0 otherwise,
(15.1)

then the number of votes to alternative j is given as

n j =
N∑
i=1

�i j (15.2)

and alternative j0 is the solution if

n j0 = max{n1, . . . , nM }. (15.3)

The large disadvantage of thismethod is the fact that it considers only best rankings
and lower rankings are not taken into account at all.

This disadvantage is eliminated by Borda counts. For each alternative calculate
the Borda counts as

Bj =
N∑
i=1

ri j . (15.4)

The alternative with the smallest Borda count is the choice. In Example 15.1,

B1 = 13, B2 = 12, B3 = 11 and B4 = 14.

Since B3 is the smallest, alternative 3 is the choice.
TheHare system is based on the successive deletions of less favorable alternatives.

This method consists of the following steps.
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Table 15.2 Reduced data set by eliminating alternative 1

Alternatives

2 3 4

Player 1 1 2 3

Player 2 2 1 3

Player 3 1 3 2

Player 4 3 1 2

Player 5 3 2 1

Table 15.3 Second reduced table by eliminating alternative 4

Alternatives

3 4

Player 1 1 2

Player 2 2 1

Player 3 1 2

Player 4 2 1

Player 5 2 1

Calculate the number of votes n j for each alternative. If an alternative has more
than half of the votes, then it is the choice and procedure terminates. Otherwise delete
an alternative with the least number of votes from the table, which has to be adjusted
accordingly. If alternative j∗ is deleted, then

rnewi j =
{
ri j − 1 if ri j > ri j∗
ri j if ri j < ri j∗,

and go back to the beginning of the procedure, which continues until an alternative
gets more than half of the votes.

In the case of Example 15.1 we can delete only one from alternatives 1, 3 and 4. If
alternative 1 is deleted, then the new table is given in Table15.2, fromwhich we have
n2 = n3 = 2 and n4 = 1, so alternative 4 has to be deleted next. The resulted table
is given in Table15.3, from which we see that n2 = 2 and n3 = 3. Since 3 > 2.5,
alternative 3 is the choice.

If alternative 3 is deleted instead of alternative 1, then the reduced table is shown
in Table15.4, where n1 = n2 = 2 and n4 = 1, so alternative 4 is deleted resulting in
Table15.5, from which we have n1 = 2 and n2 = 3, so alternative 2 is the choice.

If alternative 4 is eliminated in the first step, then the resulting table is the one
shown in Table15.6. Since n1 = 1 and n2 = n3 = 2, alternative 1 is deleted in the
next step. The second reduced table is shown in Table15.7, in which n2 = 2 and
n3 = 3, so alternative 3 is the choice.
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Table 15.4 Reduced data set by eliminating alternative 3

Alternatives

1 2 4

Player 1 2 1 3

Player 2 1 2 3

Player 3 3 1 2

Player 4 1 3 2

Player 5 3 2 1

Table 15.5 Second reduced table by eliminating alternative 4

Alternatives

1 2

Player 1 2 1

Player 2 1 2

Player 3 2 1

Player 4 1 2

Player 5 2 1

Table 15.6 Reduced data set by eliminating alternative 4

Alternatives

1 2 3

Player 1 2 1 3

Player 2 1 3 2

Player 3 3 1 2

Player 4 2 3 1

Player 5 3 2 1

The example clearly shows that the final result may depend on the choice of the
eliminated alternative if more than one have the least number of votes. This is a huge
disadvantage of this method.

Pairwise comparisons is a very popular approach. It has two major variants. For
each pair ( j1, j2) of alternatives define

N ( j1, j2) = number of players i such that ri j1 < ri j2

which gives the number of players who consider alternative j1 better than j2. If
N ( j1, j2) >

N
2 , then alternative j1 is considered better than j2. If N ( j1, j2) = N

2 ,
then the two alternatives are equally preferred.
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Table 15.7 Second reduced table by eliminating alternative 1

Alternatives

2 3

Player 1 1 2

Player 2 2 1

Player 3 1 2

Player 4 2 1

Player 5 2 1

In the first version the players agree in an agenda, which is an order of the alter-
natives, j (1), j (2), . . . , j (M). First alternatives j (1) and j (2) are compared. The better
alternative is then compared to j (3), the worse is eliminated. The winner is then
compared to j (4), and so on. The final winner is the choice.

Assume in Example 15.1 that the agenda is 1, 2, 3, 4. First alternatives 1 and 2
are compared. Since N (1, 2) = 2 and N (2, 1) = 3, alternative 2 is the winner. In
comparing alternatives 2 and 3 we have N (2, 3) = 2 and N (3, 2) = 3, so alternative
3 is the winner. The final comparison is that of alternatives 3 and 4. Here N (3, 4) = 3
and N (4, 3) = 2, so alternative 3 is the final winner.

The other version is to compare all alternative pairs and draw conclusions from a
comparison graph. In our case

N (1, 2) = 2, N (2, 1) = 3

N (1, 3) = 2, N (3, 1) = 3

N (1, 4) = 3, N (4, 1) = 2

N (2, 3) = 2, N (3, 2) = 3

N (2, 4) = 3, N (4, 2) = 2

N (3, 4) = 3, N (4, 3) = 2

resulting in the preference graph of Fig. 15.1. An arrow is given from alternative
j1 to j2 if j2 is better than j1, that is, wewant tomove from j1 to j2. Clearly alternative
3 is the overall best, since it is better than all other alternatives.

The most trivial solution isDictatorship, when one player is dictator, and his best
choice is accepted as the social choice. In the case when player 1 is dictator in Table
14.1, then alternative 2 is the choice. If player 2 is the dictator, then alternative 1 is
the choice, and so on.
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Fig. 15.1 Preference graph

Table 15.8 Data of Example 15.2

Alternatives Powersof the players

1 2 3 4

Player 1 2 1 3 4 1

Player 2 1 3 2 4 1

Player 3 4 1 3 2 2

Player 4 2 4 1 3 3

Player 5 4 3 2 1 2

15.2 Methods with Powers of Players

In the previous section equal players were assumed, which is not always the case.

Example 15.2 Table15.8 is almost the same as Table15.1, the only difference is the
added last column containing the powers of the players. �

All methods introduced in the previous section can be used with minor modifica-
tions.

In the case of Plurality voting Eq.15.2 is modified as

n j =
N∑
i=1

�i jwi (15.5)

wherewi is the power of player i . That is, best rankings are countedwithmultiplicities
according to the powers of the players. The choice is selected again from (15.3) . In
our case n1 = 1, n2 = n3 = 3, n4 = 2, so alternatives 2 and 3 are equally best.

In computing the Borda counts equation (15.4) is changed to

Bj =
N∑
i=1

ri jwi (15.6)

where rankings are multiplied by the powers of the players. In the case of Table15.8,
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Table 15.9 Reduced table by eliminating alternative 1

Alternatives Powers of the players

2 3 4

Player 1 1 2 3 1

Player 2 2 1 3 1

Player 3 1 3 2 2

Player 4 3 1 2 3

Player 5 3 2 1 2

Table 15.10 Second reduced table by eliminating alternative 4

Alternatives Powers of the players

2 3

Player 1 1 2 1

Player 2 2 1 1

Player 3 1 2 2

Player 4 2 1 3

Player 5 2 1 2

B1 = 25, B2 = 24, B3 = 18 and B4 = 23

and since B3 is the smallest, alternative 3 is the choice.
In applying Hare-system notice first that n1 is the smallest from the alternatives,

so it has to be deleted first. Table15.9 shows the reduced table. Notice that from
this table we have n2 = 3, n3 = 4 and n4 = 2, so alternative 4 has to be then deleted
resulting in Table15.10, where n2 = 3 and n3 = 6 showing that alternative 3 is the
solution.

In applyingPairwise comparisons the only change is a slightly different definition
of N ( j1, j2):

N ( j1, j2) = sum of powers of players i such that ri j1 < ri j2
and both versions can be used without further modification.

If the agenda is again 1, 2, 3, 4 then we first compare alternatives 1 and 2. Since
N (1, 2) = 4 and N (2, 1) = 5, alternative 2 is the winner, which is then compared to
alternative 3. Then we have N (2, 3) = 3 and N (3, 2) = 6 showing that 3 is the win-
ner. And finally, comparing alternatives 3 and 4we see that N (3, 4) = 5, N (4, 3) = 4
implying that alternative 3 becomes again the overall winner.

If all pairs of alternatives are compared, then
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Fig. 15.3 Reduced preference graph

N (1, 2) = 4

N (1, 3) = 2

N (1, 4) = 5

N (2, 3) = 3

N (2, 4) = 4

N (3, 4) = 5.

Note that N ( j2, j1) = ∑N
i=1 wi − N ( j1, j2), and we consider alternative j1 as

overall better than j2, if N ( j1, j2) >
1
2

∑N
i=1 wi which is denoted as j1 � j2. If

N ( j1, j2) = 1
2

∑N
i=1 wi then the two alternatives are considered equal: j1 ∼ j2. In

our case 2 � 1, 3 � 1, 1 � 4, 3 � 2, 4 � 2 and 3 � 4.
The preference graph is given in Fig. 15.2.
Again alternative 3 becomes the winner since it is better than any other alternative.

There is however a problem with this graph. Consider alternatives 1, 2 and 4. Their
preferences are contradictory, since 2 � 1 and 1 � 4 so by transitivity it should follow
that 2 � 4. However 4 � 2 which is a clear contradiction. If such cycle appears in
the graph then the best is to delete the entire cycle to get the reduced graph shown
in Fig. 15.3.

Clearly, alternative 3 remains the best.
Dictatorship can be applied without any modification, the player with largest

power canbe considered as the dictator. In our case it is player 4, his choice, alternative
3 is therefore the solution.

Before closing this chapter some comments are in order. Notice first that the
methods of Section 15.2 are reduced to those of Section 15.1 if we selectw1 = w2 =
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· · · = wN = 1. The methods introduced in this chapter assume that the number of
alternatives in finite. In the case of infinitely many alternatives let S denote the set of
alternatives and assume that each player k defines a real-valued function rk(x), x ∈ S,
as the ranking of alternative x . The best choice of player k is clearly argminx∈S rk(x).
In the case of infinitely many alternatives there is a slight chance that more than
one players select the same best choice. Otherwise plurality voting is the same as
dictatorship, when the player with the largest power is the dictator. Assume that
functions are normalized in a way that their commonminimal value is unity. Assume
in addition that each player selects an r∗

k > 1 value such that alternativeswith rk(x) <
r∗
k are still considered “close to best”. Then for each player we can define his “close
to best set” as

Ck = {
x |rk(x) < r∗

k

}
(15.7)

which might overlap for different players. Then the number of votes alternative x
gets is defined as

nx = number of players k such that x ∈ Ck,

and the solution is alternative x with the largest nx value.
The Borda count is the same as the weighting method of multiobjective optimiza-

tion. Let

B(x) =
N∑
i=1

ri (x)wi , (15.8)

and the social choice is

x∗ = argmin
x∈S B(x). (15.9)

The Hare systems and Pairwise comparisons heavily depend on the finiteness of
the alternative set, so it is very complicated to extend them to infinite alternative sets.
We can always use a multiobjective optimization method with objective functions
rk(x) and weights wk when all objectives are minimized.



Chapter 16
Case Studies and Applications of Static
Games

In Chaps. 2 and 3 we have already introduced simple examples of games modeling
situations in competition, social issues, tax evasion, waste management, advertise-
ment, homeland security, elections, military, economics, location for a business,
market sharing, duel, espionage and auctions among others. In this chapter some
additional applications of game theory are outlined.

16.1 A Salesman’s Dilemma

Consider a salesman who is selling an equipment to a customer. The equipment has
three components, each of them can be defective or in working order. After delivering
the equipment the customer has to pay α dollars to the salesman, unless at least one
of the components turns out to be defective. In this case instead of receiving the
price, the salesman has to pay β dollars penalty to the customer. In order to decrease
the chance of losing money, the salesman is able to check one or more components
before delivery, which costs him γ dollars for each component being checked. So
the salesman has 4 strategies depending on the number of checked components, and
therefore his strategy set is S1 = {0, 1, 2, 3}. If he decides to check more than one
components and in the process he discovers a defective component, then he does not
need to continue to check more.

This situation can be modeled as a “game against nature”, when the nature is the
equipment which also has 4 strategies, the possible number of defective components.
So its strategy set is S2 = {0, 1, 2, 3}. The pessimistic salesman considers this two-
person game as a zero-sum game. By assuming that the components may fail with
equal probability and the salesman selects the components to be checked with equal
probability, the payoff matrix of the salesman (who is player 1) is given in Table16.1.
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Table 16.1 Payoff matrix of
player 1 �

�S
E

0 1 2 3

0 α −β −β −β

1 α − γ − 2
3β − γ − 1

3β − γ −γ

2 α − 2γ − 1
3β − 5

3γ − 4
3γ −γ

3 α − 3γ −2γ − 4
3γ −γ

Let fi j denote the (i, j) element of the payoff matrix with 0 � i, j � 3. If the
equipment has no defective component (when j = 0), then the salesman certainly
will receive the price of the equipment and his cost is γ times the number of checked
equipments. So

fi0 = α − iγ i = 0, 1, 2, 3.

If all components are defective, then the salesman pays the penalty only if he
does not check any component, otherwise at the first checking he realizes that the
equipment is defective.

Therefore

fi3 =
{

−β if i = 0

−γ if i � 1.

Similarly, if i = 0, that is, when the salesman does not check any of the compo-
nents, then he gets the price if j = 0 and pays the penalty otherwise:

foj =
{

α if j = 0

−β if j � 1.

The other matrix elements can be obtained by simple probabilistic considerations.
In the case of f11 only one component is defective, which can be discovered with

probability 1
3 , so with probability 2

3 the salesman will deliver the equipment and
pay the penalty. In addition to this, checking the component costs him γ dollars.
In the case of f12, the salesman checks 1 component, so he has 1

3 probability to
miss one of the two defective components implying that f12 = − 1

3β − γ . In the
case of f21 we can reason as follows. One component is defective, so there are three
possibilities: (a) the defective component is not discovered with probability 1

3 , (b)
the defective component is discovered during the first checking with probability 1

3 ;
(c) it is discovered during the second checking with probability 1

3 . Therefore

f21 = 1

3

( − β − 2γ
) + 1

3

( − γ
) + 1

3

( − 2γ
) = −1

3
β − 5

3
γ.
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In the case of f22 two components are defective and since the salesman checks
2 components, there is no way he will believe that the equipment is good. He can
discover a defective component in either the first or in the second checking. The
corresponding probabilities are 2

3 and 1
3 with associated costs −γ and −2γ , so

f22 = 2

3

( − γ
) + 1

3

( − 2γ
) = −4

3
γ.

If i = 3, then the salesman always finds detective component unless j = 0. If
only one component is detective, then he can find it either in the first, or in second,
or in third checking. So

f31 = 1

3

( − γ
) + 2

3

[1
2

( − 2γ
) + 1

2

( − 3γ
)] = −2γ.

If two components are detective, then it can be discovered either in the first or in
the second checking, so

f32 = 2

3

( − γ
) + 1

3

( − 2γ
) = −4

3
γ.

The Nash equilibrium is a strategy pair (i, j) such that the fi j element is largest
in its column and smallest in its row.

The first row has three smallest elements: f01, f02 and f03. f01 is largest in its
column if

−β � −2

3
β − γ

−β ≥ −1

3
β − 5

3
γ

−β ≥ −2γ.

Simple algebra shows that these relations hold if and only if β � 2γ . f02 is largest
in its column, if

2 − β ≥ −1

3
β − γ

−β ≥ −4

3
γ

which is the case if and only if β ≤ 4
3γ .

Element f03 is largest in its column, if

−β ≥ −γ

that is, when β � γ .
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The smallest element in the second row is f11 which is largest in its column if

−2

3
β − γ � −β

−2

3
β − γ ≥ −1

3
β − 5

3
γ

−2

3
β − γ ≥ −2γ

which cannot occur since these inequalities are contradictory.
In the third row we can have f20 and f21 as smallest elements, however f20 cannot

be the largest in its column, so only f21 can provide equilibrium. It is the case if

−1

3
β − 5

3
γ � α − 2γ

−1

3
β − 5

3
γ ≥ −β

−1

3
β − 5

3
γ ≥ −2

3
β − γ

−1

3
β − 5

3
γ ≥ −2γ

which relations are also contradictory.
In the last row both f30 and f31 can be the smallest. Notice that f30 cannot be the

largest in its column, so only f31 is a potential equilibrium, which is the case if

−2γ � α − 3γ

−2γ ≥ −β

−2γ ≥ −2

3
β − γ

−2γ ≥ −1

3
β − 5

3
γ

and these relations hold if β ≥ 2γ and γ � α.
Figure16.1 illustrates the different cases and the equilibria.
In region A the unique equilibrium is (3, 0) if γ � α, and if γ > α, then no

equilibrium exists. In region B there is a unique equilibrium (0, 1), in region C we
have two equilibria (0, 1) and (0, 2), and finally in region D there are three equilibria,
(0, 1), (0, 2) and (0, 3). It is interesting to notice that the number of equilibria and
the equilibria themselves depend on model parameters. We had a similar continuous
case in Example 3.3, when the different possibilities of Cournot oligopoly were
discussed.
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Fig. 16.1 Different cases in equilibrium analysis

16.2 Oligopoly in Water Management

The oligopoly game was introduced as a real economic situation. In this section we
will show how the oligopoly game can be applied in water resources management.
1. Consider a region where local companies (industry, agriculture, etc.) produce
waste water which has to be cleaned in a common plant. Let N denote the number
of companies, and sk the amount of waste water produced by company k, so the
total treated water amount in the treatment plant is s = ∑N

k=1 sk . The annual benefit
for each company (for example, by avoiding penalty) depends on the amount of its
waste water to be treated, Bk(sk), and the total annual cost of the entire plant depends
on only s, A(s). It is assumed that the different firms contribute to the total cost in
proportion to the amounts of their waste water being treated in the plant. So the net
benefit for company k is given as

Πk = Bk(sk) − sk
s
A(s). (16.1)

If we introduce the notation

p(s) = −1

s
A(s) and Ck(sk) = −Bk(sk)

then the payoff function becomes the same as given in (3.26).
2. Consider next N farms who want to construct a joint irrigation system and share
costs in proportion to their water usage. This situation can bemodeled similarly to the
previous case. Let sk denote the water usage of farm k, then its benefit from irrigation
is Bk(sk) and its contribution to the joint operation is sk

s A(s), where s = ∑N
k=1 sk

and A(s) is the operating cost of the system. Then the net benefit of farm k is given
in (16.1) leading to the same model as before.
3. In river basin planning several demands have to be met, water supply, flood pro-
tection, irrigation, water quality control, and recreation. The development cost of the
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system should be distributed among the various beneficiaries. The storage volume
of the reservoir system is

∑
si , where si is the storage volume utilized by user i . The

development cost is given as C
( ∑

si
)
which is divided up by the users in proportion

to their water usage. The benefit of user i is Bi (si ) resulting from utilizing a volume
si of stored water. It is easy to see that the net benefit of the users have the same form
as (16.1), so this situation is also equivalent to an oligopoly.

The interested reader may find more details of these models in Bogardi and Szi-
darovszky (1976).

16.3 A Forestry Management Problem

In the Northern part of the state of Arizona there was a need to find an appropriate
forest treatment strategy. Four alternativemethodswere considered, whichwere tried
out in four different watersheds to assess the consequences of the different treatment
strategies.

Alternative 1. On a completely clear cut watershed of 184 ha all merchantable
poles and saw timber were removed, the remaining noncommercial wood felled.
The slash and debris were machine winddrowed to trap and retain snow. In addition,
it reduced evapotranspiration losses and increased surface drainage efficiency. The
trees then were allowed to sprout and grow.

Alternative 2. Uniform thinning was used in a 121 ha watershed where 75% of
the initial 30m2

ha of basal was removed, even-aged groups of trees were left with an

average basal area of 7m2

ha . All slash was also winddrowed.
Alternative 3. In the third watershed of 546 ha an irregular strip cut was applied,

where all merchantable wood was removed within irregular 20m wide strips and the
remaining non-merchantable trees felled. The forest overstory in the intervening leaf
strips averaging 35m width were reduced to 25% of the basal area. This combined
treatment resulted in almost 60% reduction in the basal area. Slash was piled and
burned in the cleared strips.

Alternative 4. The fourth watershed of 351 ha was chosen as the control, where
minimal managenal input was used for custodial management. This watershed was
the basis, to which the other treatment strategies were compared.

Six interest groups were evaluating the consequences of the different treatment
strategies and as the result, all groups provided the rankings of the alternatives. The
data are given in Table16.2. In order to find a mutually acceptable alternative, social
choice methods were used.

In applyingPlurality voting notice that the number of votes for the four alternatives
are

n1 = 2, n2 = 0, n3 = 1, n4 = 3

so A4 (control) is the solution.
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Table 16.2 Rankings of the alternatives

A1 A2 A3 A4

Clear Cut Uniform
thinning

Irregular
strip cut

Control

P1 Water users 1 2 3 4

P2 Wildlife advocates 4 2 1 3

P3 Livestock
producers

1 2 3 4

P4 Wood producers 3 4 2 1

P5 Environmentalists 4 3 2 1

P6 Managers 4 2 3 1

Table 16.3 Reduced table for Hare system

A1 A3 A4

P1 1 2 3

P2 3 1 2

P3 1 2 3

P4 3 2 1

P5 3 2 1

P6 3 2 1

The Borda counts of the alternatives are as follows:

B1 = 17, B2 = 15, B3 = 14, B4 = 14.

So alternative A3(irregular strip cut) and A4(control) are equally the best.
Since alternative 2 has the least number of votes, in applying the Hare system

it has to be first deleted. The reduced table is given as Table16.3, where the new
numbers of votes are

n1 = 2, n3 = 1 and n4 = 3.

Since alternative A3 has the least number of votes, it has to be next eliminated
resulting in Table16.4.

In this new table n1 = 2 and n4 = 4, so alternative A4(control) is the final choice.
In applyingPair-wise comparisons, we have the following preferences: sowe have

only two preference orders: 3 � 1 and 4 � 1. So alternative 1 cannot be considered
as the solution.
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Table 16.4 Further reduced table for Hare system

A1 A4

P1 1 2

P2 2 1

P3 1 2

P4 2 1

P5 2 1

P6 2 1

Table 16.5 Reduced table in pair-wise comparisons

A2 A3 A4

P1 1 2 3

P2 2 1 3

P3 1 2 3

P4 3 2 1

P5 3 2 1

P6 2 3 1

N (1, 2) = 3

N (1, 3) = 2

N (1, 4) = 2

N (2, 3) = 3

N (2, 4) = 3

N (3, 4) = 3

After A1 is eliminated, the reduced table is given in Table16.5.
In this table we have

N (1, 2) = 3

N (1, 3) = 3

N (2, 3) = 3

showing that there is no difference between these alternatives based on pair-wise
comparisons.

Finally we note that the problem outlined above is discussed in more details in
Eskandari et al. (1995).
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16.4 International Fishing

Consider a common fishing ground where N countries are engaged in commercial
fishing. Let X be the fish stock in the fishing ground. In each country k there are nk
firms harvesting fish, the fishing effort of firm j from country k is denoted by ek j .
Thus the total fishing effort of country k is given as Ek = ∑nk

j=1 ek j . The profit of
firm j from country k can be obtained as the difference of its revenue and cost. The
harvest rate of country k is assumed to be Sk = Ekqk X , so the profit of firm j is

πk j = fk(Sk)qkek j X − ck j ek j (16.2)

where fk is the inverse demand function in country k for the harvested fish, qk is the
common catchability coefficient of the firms in country k, and ck j is the unit cost of
fishing effort of firm j of country k.

Assume first that the firms of each country k form an nk-firm oligopoly and
select Nash-equilibrium inside the country. With given fish stock X , the countries
are independent of each other. Similarly to the assumptions given in Example 3.14
for Cournot oligopolies we assume that for all k and j ,

(a) f
′
k(Sk) < 0

(b) f
′′
k (Sk)qkek j X + f

′
k(Sk) � 0.

Notice that (a) implies that the price decreases if the fish supply increases. Since

∂πk j

∂ek j
= f ′

k(Sk)q
2
k ek j X

2 + fk(Sk)qk X − ck j (16.3)

and

∂2πk j

∂e2k j
= f ′′

k (Sk)q
3
k ek j X

3 + 2 f
′
k(Sk)q

2
k X

2, (16.4)

assumption (b) guarantees that πk j is strictly concave in ek j . It is a natural assumption
that the fishing effort of each firm is limited, so we have 0 � ek j � Lkj for all k and
j . Notice that the revenue of firm j in county k can be rewritten as

[
fk(Ekqk X)qk X

]
ek j ,

so the bracketed expression can be imagined as the Ek-dependent price function,
since the other quantities qk and X are given. As a consequence of Example 3.14
there is a unique Nash equilibrium among the firms of country k.
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For the sake of simplicity assume that equilibrium is interior, then for all j ,

f ′
k(Sk)q

2
k ek j X

2 + fk(Sk)qk X − ck j = 0. (16.5)

By adding up this relation for all values of j ,

f ′
k(Ekqk X)q2

k Ek X
2 + fk(Ekqk X)qk Xnk −

nk∑
j=1

ck j = 0, (16.6)

from which Ek can be determined, and individual fishing efforts of the firms are
obtained from (16.5).

Assume next that the firms of each country form a grand coalition and want to
maximize their total profit. In this case the profit of the coalition becomes

π c
k = fk(Ekqk X)qk Ek X − ck Ek (16.7)

where we assume for the sake of simplicity that the firms of country k have identical
unit cost, ck j ≡ ck . Notice that

∂π c
k

∂Ek
= f

′
k(Ekqk X)q2

k Ek X
2 + fk(Ekqk X)qk X − ck

and

∂2π c
k

∂E2
k

= f
′′
k (Ekqk X)q3

k Ek X
3 + 2 f

′
k(Ekqk X)q2

k X
2 < 0

by assumption (b) with ek j = Ek . So π c
k is strictly concave in Ek . Since 0 � Ek �∑nk

j=1 Lkj , the domain for Ek is a compact set and function π c
k is continuous, there

is a unique maximal value for Ek . If it is interior, then it satisfies equation

f
′
k(Ekqk X)q2

k Ek X
2 + fk(Ekqk X)qk X − ck = 0. (16.8)

In order to determine a cooperative solution, the characteristic function of the
cooperative game has to be determined. Assume that some firms from country k
form a coalition Ck . Then the coalition’s profit is given as

π
ck
k = fk

(
(Eck

k + Eck
k )qk X

)
qk E

ck
k X − ck E

ck
k (16.9)

where Eck
k is the total effort of the members of Ck and Eck

k is the total effort of the
other firms. Assuming the characteristic function form (11.1), first this function is
minimized by the firms not belonging to the coalition. This can be done by minimiz-
ing the price function, which can occur if they have maximal fishing effort, Eck

k =∑
j /∈Ck

Lk j . And then the coalition maximizes its overall profit under this worst case
scenario:
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maximize E
ck
k
fk

((
Eck
k +

∑
j /∈Ck

Lk j

)
qk X

)
qk E

ck
k X − ck E

ck
k . (16.10)

This objective function is strictly concave and continuous, therefore there is a
unique maximal solution. The derivative of the objective function with respect to
Eck
k can be written as follows:

f
′
k

((
Eck
k +

∑
j /∈Ck

Lk j

)
qk X

)
q2
k E

ck
k X2 + fk

((
Eck
k +

∑
j /∈Ck

Lk j

)
qk X

)
qk X − ck .

If

fk

(( ∑
j /∈Ck

Lk j

)
qk X

)
qk X − ck � 0,

then Eck
k = 0 is the optimal solution. Otherwise the optimal solution is positive.

After the characteristic function is determined, the application of the cooperative
solution concepts, such as the core, the stable sets, the nucleolus, the Shapley values,
the kernel and bargaining sets can be easily applied. We note that Szidarovszky et al.
(2005) discusses dynamic extension of the model presented in this section.

16.5 A Water Distribution Problem

Mexico City is one of the most populated cities of the world with a severe water
shortage. The main water users are agriculture, industry and domestic users. The
question is how to divide the limited water amount between the users. This situation
can be considered as a three-person game, where the three water users are the players
and their payoff functions are the amounts ofwater they receive.There arefive sources
of water: surface water from local source, imported surface water, groundwater from
local source, imported ground water, and treated water. So the decision variables (or
strategies) of player k (k = 1, 2, 3) are as follows:

sk = surface water usage from local source

s∗
k = imported surface water usage

gk = groundwater usage from local source

g∗
k = imported groundwater usage

tk = treated water usage.
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Because of water availability and demands, the players have to satisfy the follow-
ing constraints. First, for each player k,

sk + s∗
k + gk + g∗

k + tk � Dk (16.11)

where Dk is the total water demand of player k in order to avoid wasting water. A
minimum amount has to be given to the players to survive:

sk + s∗
k + gk + g∗

k + tk � Dmin
k . (16.12)

The players cannot use more water from the different resources than the available
amounts:

s1 + s2 + s3 = Ss (16.13)

s∗
1 + s∗

2 + s∗
3 � S∗

s (16.14)

g1 + g2 + g3 = Sg (16.15)

g∗
1 + g∗

2 + g∗
3 � S∗

g (16.16)

where Ss, S∗
s , Sg and S∗

g are available water amounts of local and imported surface
water, local and imported ground water, respectively. In (16.13) and (16.15) we
require equality, so all local resources have to be used before water is imported.

In addition to these requirements each player has its individual constraints.
The agricultural users (k = 1) must satisfy two major conditions. The following

notation is introduced to formulate them:

G = set of crops which can use only groundwater

ai = area of crop i in agricultural area

wi = water need of crop i per ha

T = set of crops which can use treated water

W =
∑

aiwi = total water need for irrigation.

Groundwater has the best and treated water has the worst quality, so the most
sensitive crops can use only groundwater and the least sensitive crops can be irri-
gated with treated water. Therefore we have to require that the ratio of available
groundwater cannot be less than the relative water need of crops that can use only
groundwater:

g1 + g∗
1

s1 + s∗
1 + g1 + g∗

1 + t1
�

∑
i∈G aiwi

W
.
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Notice that this is equivalent to a linear constraint:

α1s1 + α1s
∗
1 + (α1 − 1)g1 + (α1 − 1)g∗

1 + α1t1 � 0, (16.17)

where α1 is the right hand since of the above inequality.
Similarly, the ratio of treated water availability cannot be larger than the ratio of

water need of crops that can be irrigated with treated water:

t1
s1 + s∗

1 + g1 + g∗
1 + t1

�
∑

i∈T aiwi

W

which is again equivalent to a linear constraint:

− β1s − β1s
∗
1 − β1g1 − β1g

∗
1 + (1 − β1)t1 � 0 (16.18)

where β1 is the right hand side of the above inequality.
The industrial users (k = 2) have two conditions concerning water quality. Let

Bg = minimum proportion of groundwater the industry has to receive

Bt = maximum proportion of treated water the industry can use.

Since groundwater has the best quality, in order to ensure aminimumoverall water
quality for industry, the proportion of groundwater usage of the industry cannot be
smaller than Bg:

g2 + g∗
2

s2 + s∗
2 + g2 + g∗

2 + t2
� Bg

and since treated water has the worst quality, the proportion of treated water usage
cannot exceed Bt :

t2
s2 + s∗

2 + g2 + g∗
2 + t2

� Bt .

Both constraints are equivalent with linear inequalities:

Bgs2 + Bgs
∗
2 + (Bg − 1)g2 + (Bg − 1)g∗

2 + Bgt2 � 0 (16.19)

and

− Bts2 − Bts
∗
2 − Btg2 − Btg

∗
2 + (1 − Bt )t2 � 0. (16.20)

Domestic water users (k = 3) have only one constraint concerning the treated
water usage, since its usage is very limited such as irrigation in parks, etc. Let
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Table 16.6 Model data

k = 1 k = 2 k = 3

Dmin
k 594 177 1092.81

Dk 966 230 2123

α1 0.41

β1 0.33

Bg 0.066

Bt 0.20

Bd 0.06

Bd =maximumallowed treatedwater proportion for domestic users, then the require-
ment is as follows:

t3
s3 + s∗

3 + g3 + g∗
3 + t3

� Bd ,

which can be rewritten as

− Bds3 − Bds
∗
3 − Bdg3 − Bdg

∗
3 + (1 − Bd)t3 � 0. (16.21)

The payoff of each user is the total amount of water it receives:

φk = sk + s∗
k + gk + g∗

k + tk (k = 1, 2, 3). (16.22)

In summary, we have a three-person game with payoff functions (16.22). The
strategy set of player 1 (agriculture) is defined by constraints (16.11), (16.12) with
k = 1, (16.17) and (16.18). That of player 2 (industry) is given by (16.11), (16.12)
with k = 2, (16.19), (16.20)while the strategy set of player 3 (domestic users) is given
by (16.11), (16.12) with k = 3 and (16.21). However the individual strategy sets are
not independent by the additional four constraints (16.13)–(16.16). The actual data
are given in Table16.6 which are real values in the Mexico City region (Ahmadi &
Salazar Moreno, 2013).

This problem is considered first as a three-person noncooperative game. The
solution algorithm is almost the same as it was explained earlier in Sections 6.1
and 6.2 with the only difference that the “joint” constraints (16.13)–(16.16) also had
to be taken into account in formulating the Kuhn-Tucker conditions for the three
players. The numerical results are given in Table16.7. Since the objective function
value becomes zero, the results give equilibrium. Notice that all constraints and
payoff functions are linear, therefore the Kuhn - Tucker conditions are sufficient and
necessary. The results show that agricultural and industrial demands are completely
satisfied, however the demand of the domestic users is satisfied in only 59.43%.

We can also consider this problemwith having amediator, the government agency
and solving the problem as a multiobjective optimization problem with three objec-
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Table 16.7 Nash-equilibrium results

k = 1 k = 2 k = 3 Total

sk 0 0 58 58

gk 966 205.3 530.647 1702

tk 0 0 75.702 75.702

s∗
k 0 24.64 428.353 453

g∗
k 0 0 169.000 169

Total 966 230 1261.70

Table 16.8 Weighting method results

k = 1 k = 2 k = 3 Total

sk 0 58 0 58

gk 647.22 83.60 971.180 1702

tk 318.78 35.40 101.692 455.87

s∗
k 0 0 453 453

g∗
k 0 0 169 169

Total 966 177 1694.87

tives. The weighting method was used where slightly higher weight was given to
domestic users, since Mexico City has one of the largest population among the cities
of the World: w1 = w2 = 0.3 and w3 = 0.4 were chosen. The results are shown in
Table16.8 showing that in this case only the agricultural demands can be completely
satisfied while industrial and domestic demands can be satisfied in only 76.96% and
79.83% levels.

From both sets of results we can see that domestic water demands cannot be
satisfied. We also recomputed the weighting method results with w1 = w2 = 0 and
w3 = 1, where the maximum supply for domestic users became only 1960, only
92.32% of the demand. That is, there is no way to satisfy the growing water demand
of the city in the current system and infrastructure.



Chapter 17
Case Studies and Applications of
Repeated and Dynamic Games

In Chap.3 we introduced static duopolies and N-person oligopolies, furthermore in
Sect. 9.2 their dynamic extensions were examined. In this chapter we first further
investigate dynamic oligopolies. In addition models on environment friendly com-
panies, competing species and love affairs will be introduced and analysed in this
chapter. And finally, the possibility of governmental control of oligopolistic firms
will be examined.

17.1 Oligopolies with Pollution Control

In Sect. 3.2. We introduced N -firm Cournot oligopolies, and proved the existence
of a unique equilibrium under realistic conditions. For the sake of mathematical
simplicity we assume now that the price function and all cost functions are linear:

p (s) = a − bs
(
s ≤ a

b

)
andCk (xk) = ckxk + dk (k = 1, 2, . . . , N )

where xk is the output (production level) of firm k, and s =
n∑

k=1
xk is the industry

output. The profit of firm k was given in Eq.3.26, which is simplified as

φk (x1, x2, . . . , xN ) = xk

(
a − b

N∑
l=1

xl

)
− (ckxk + dk) (17.1)

It is easy to see that conditions (a), (b) and (c) introduced in Example3.14 hold in
this special case. The marginal profit of firm k is clearly
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∂φk

∂xk
= a − 2bxk − b

∑
i �=k

xi − ck

Assuming interior optimum, the best response of this firm is

R (sk) = a − ck − bsk
2b

(17.2)

where sk = ∑
i �=k

xi . At the equilibrium

xk = a − ck − bsk
2b

for all k, which can be rewritten as

2bxk = a − ck − b (s − xk)

or

xk = a − ck − bs

b

Adding this relation for all values of k we have

bs = Na −
N∑
i=1

ci − Nbs

implying that the equilibrium industry output level is

s∗ =
Na −

N∑
i=1

ci

(N + 1) b
(17.3)

and the equilibrium output of firm k is therefore

x∗
k = a − ck

b
−

Na −
N∑
i=1

ci

(N + 1) b
=

a +
N∑
i=1

ci − (N + 1) ck

(N + 1) b
(17.4)

In Sect. 9.2. we also introduced the dynamic extensions of this model in both discrete
and continous time scales. In this section continous time scales are assumed.

Two types of dynamics were introduced: best response dynamics and gradient
adjustments, which have the common formulation
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ẋk (t) = Kk

⎛
⎝αk − β

∑
i �=k

xi (t) − xk (t)

⎞
⎠ (k = 1, 2, . . . , N ) (17.5)

where dot indicates derivative with respect to time, furthermore αk = a−ck
2b , β = 1

2
and Kk is a positive adjustment coefficient.Wealso demonstrated that system (17.5) is
asymptotically stable meaning that with any xk (0) , (k = 1, 2, . . . , N ) initial output
levels, xk (t) for all k converges to the corresponding equilibrium level x∗

k as t → ∞.
In recent decades increasing attention has been given to environmental policies

to control environmental degradation. Main sources of degradation are greenhouse
gas and pollution emissions by industries using nonrenewable energy sources. One
of the many tasks of governments is to find policies that can control pollution emis-
sions. There are two major types of polluters. In the case of point source polluters
the government knows the individual emission levels of the firms, so it can make
punishments or subsidies individually. In the case of non-point source polluters the
government is able to monitor only the total emission level produced by the industry
without knowing the individual level of each firm. Therefore collective punishments
or subsidies are the only tools for the govermnent to achieve its objectives (Segerson,
1988). In developing a mathematical model describing this situation we will use the
N -firm oligopoly introduced before. So N is the number of firms, with cost functions

Ck (xk) = ckxk + dk, (k = 1, 2, . . . , N )

where xk is the production level (output) of firm k. Let s =
N∑
i=1

xi denote the industry

output, then the price function is assumed to be

p (s) = a − bs.

Theproductionprocess of thefirms creates pollution emissions. Selecting appropriate
units we can assume that production of one output unit produces one unit of pollution.
In order to avoid or reduce environmental penalties the firms try to abate a part of
the emitted pollution. Let 1-ek denote the pollution reduction coefficient of firm k,
so this firm will have the emission level ekxk , so the total emission of the industry

is
N∑
i=1

ei xi .The government defines an environmental standard, Ē . If the emission of

the industry is higher than Ē , then each firm has to pay a uniform penalty:

Θ

(
N∑
i=1

ei xi − Ē

)
,

and if it is less than the environmental standard, then each firm receives a uniform
subsidy
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Θ

(
Ē −

N∑
i=1

ei xi

)
.

The profit of firm k is its profit from production modified with the penalty paid or
the subsidy received:

φk (x1, x2, ..., xN ) = xk p (s) − Ck (xk) − Θ

(
N∑
i=1

ei xi − Ē

)
=

= xk

(
a − b

N∑
i=1

xi

)
− (ckxk + dk) − Θ

(
N∑
i=1

ei xi − Ē

) (17.6)

The marginal profit of this firm is

∂φk

∂xk
= a − bs − bxk − ck − Θek .

Notice that φk is strictly concave in xk . Assuming interior optimum, the best response
of firm k is the following:

xk = a − bs − ck − Θek
b

(17.7)

which depends on the total industry output. Adding this equation for all firms

s = 1

b

(
Na − Nbs −

N∑
i=1

ci − Θ

N∑
i=1

ei

)

implying that the equilibrium industry output level is

s∗ =
Na −

N∑
i=1

ci − Θ
N∑
i=1

ei

(N + 1) b
(17.8)

Notice that in the case when ei = 0 (i = 1, 2, . . . , N ), that is, all pollution is abated
by the firms, this equation reduces to (17.3). Substituting this relation into (17.7) we
have the equilibrium output level of firm k for k =1,2,…, n:

x∗
k = a − ck − Θek

b
−

Na −
N∑
i=1

ci − Θ
N∑
i=1

ei

(N + 1)b
= (17.9)
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=
a +

(
N∑
i=1

ci − (N + 1) ck

)
+ Θ

(
N∑
i=1

ei − (N + 1) ek

)

(N + 1) b

The assumption that the best response is positive is understandable, since if a firm
has zero optimal output level, then it ususally leaves the business.

Assuming continous time scales and gradient adjustment the dynamic equation
becomes

ẋk (t) = Kk

(
a − b

∑
i �=k

xi (t) − 2bxk (t) − ck − Θek

)
=

= K̄k

(
αk − β

∑
i �=k

xi (t) − xk (t)

) (17.10)

where

αk = a − ck − Θek
2b

, β = 1

2
andK̄k = 2bKk .

This model is identical with (9.24) so the dynamic properties and stability condi-
tions are the same as those discussed in Sect. 9.2.

17.2 Competition of Two Species

In this section the interaction of two competitive species is examined. The math-
ematical model is based on the works of Volterra (1931), Lotka (1925). At time t
let x(t) and y(t) denote the population of the species which are subject to intrinsic
growth, inter-, and intra-competition within or between the species. This interaction
is usually modeled by the so called Lotka-Volterra equations:

ẋ (t) = x (t) [ε1 − a11x (t) − a12y (t)]
ẏ (t) = y (t) [ε2 − a21x (t) − a22y (t)]

(17.11)

Here ε1 and ε2 denote the intrinsic growth rates, aii is the crowding coefficients mea-
suring the strength of the intra-competitionwithin species i , and ai j is the competition
coefficient measuring the strength of species i against species j . All model parame-
ters are assumed to be positive. The steady state or equilibrium (x̄, ȳ) represents the
state of the system that will not change anymore, that is, when both ẋ (t) and ẏ (t)
are equal to zero. Several cases should be considered

(a) x̄ = ȳ = 0
(b) x̄ = 0, ȳ = ε2

a22
(c) ȳ = 0, x̄ = ε1

a11
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(d)
ε1 − a11 x̄ − a12 ȳ = 0
ε2 − a21 x̄ − a22 ȳ = 0

(17.40)

In cases (a), (b) and (c) at least one species has zero population, so we cannot
speak about interaction. Therefore we deal only with case (d).

Simple calculation shows that

x̄ = ε1a22 − ε2a12
a11a22 − a12a21

, ȳ = ε2a11 − ε1a21
a11a22 − a12a21

(17.12)

The two species can coexist if x̄ > 0 and ȳ > 0 which is the case if

a11
a21

>
ε1

ε2
>

a12
a22

(17.13)

Let g1 and g2 denote the right hand sides of equations (17.11), then their partial
derivatives at the equilibrium are

∂g1
∂x

= [ε1 − a11 x̄ − a12 ȳ] − a11 x̄ = −a11 x̄

∂g1
∂y

= −a12 x̄

∂g2
∂x

= −a21 ȳ

∂g2
∂y

= [ε2 − a21 x̄ − a22 ȳ] − a22 ȳ = −a22 ȳ

so the linearised equations have the form

ẋ (t) = −ax x (t) − bx y (t)
ẏ (t) = −byx (t) − ay y (t)

(17.14)

where ax = a11 x̄, bx = a12 x̄, ay = a22 ȳ and by = a21 ȳ.
In order to find the characteristic polynomial assume exponential solutions x (t) =

eλt u and y (t) = eλtv and substitute them into (17.14) to have

λeλt u = −axeλt u − bxeλtv

λeλtv = −byeλt u − ayeλtv
.

Nonzero solutions for u and v exist if and only if the determinant of this system with
respect to u and v equals zero. After simplifying by eλt we see that

det

(
λ + ax bx
by λ + ay

)
= λ2 + λ

(
ax + ay

) + (
axay − bxby

) = 0
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The linear coefficient is positive, the constant term is also positive by (17.13). Since
both are positive (see Appendix H), the equilibrium is asymptotically stable under
the linearized dynamics and locally asymptotically stable under dynamics (17.11).

17.3 Love Affair with Cautious Partners

Consider two partners being involved with romantic relationships with each other.
Each of them has romantic feelings about the other, which might change in time.
There are three major elements influencing their feelings. Oblivion (O1 or O2) gives
rise to a loss of interest in the partner describing the self-reaction process. Clearly it
depends on his/her own level of feeling and the disappeareance of the partner. Return
(R1 or R2) is a source of interest reacting to the partner’s love. And finally instinct (I1
or I2) is also a source of interest reacting to the partner’s appeal based on physical,
intellectual, educational and financia properties.

Based on the works of Strogatz (1988) and Rinaldi (1998a, b) the following func-
tional relations are assumed. Let x(t) and y(t) denote the two individuals’ feelings
toward each other. Then it is assumed that

O (x) = −αx x, O (y) = −αy y
(
αx , αy > 0

)
(17.15)

Rx (y) = βx tanh (y) , Ry (x) = βy tanh (x) (17.16)

and
Ix = γx Ay, Iy = γy Ax

(
Ax , Ay ≥ 0

)
(17.17)

and the dynamic evolution of the feelings of the partners are driven by the following
two-dimensional system of ordinary differential equations:

ẋ (t) = Ox (x (t)) + Rx (y (t)) + Ix (17.18)

ẏ (t) = Oy (y (t)) + Ry (x (t)) + Iy (17.19)

where dot represents derivative with respect to time t .
Assumption (17.15) gives attention to exponentially vanishingmemory. In (17.16)

the hyperbolic functions are positive, bounded from above and concave for positive
values of y or x . They are negative, bounded from below and convex for negative
values of y or x . If βx (βy) is positive, then the feeling of the individual is encouraged
by his/her partner. Such individuals are called secure. However if βx (βy) is negative,
then the feeling of the individual is discouraged, and such individuals are called
non-secure. Assumption (17.17) shows that individuals have time-invariant positive
appeal. Coefficients αx (αy) are called forgetting parameters, βx , βy , γx and γy are
reaction coefficients of love and appeal. With these terms the model in (17.18) and
(17.19) has the form:
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ẋ (t) = −αx x (t) + βx tanh (y (t)) + γx Ay (17.20)

ẏ (t) = βy tanh (x (t)) − αy y (t) + γy Ax (17.21)

For the sake of mathematical simplicity assume that Ax = Ay = 0, so the right hand
sides have only two terms. The steady state of this system has to satisfy ẋ (t) =
ẏ (t) = 0 so we get two nonlinear equations

αx x = βx tanh (y)
βy tanh (x) = αy y

(17.22)

or

y = tanh−1

(
αx

βx
x

)
= βy

αy
tanh (x) (17.23)

Clearly x*= y*=0 is a solution.

Theorem 17.1 (a) If αxαy ≥ βxβy then x*= y*=0 is the unique steady state.
(b) If αxαy < βxβy then there are three steady states: zero, a positive and a

negative.

Proof Let u(x) and v(x) denote the middle and last expressions of (17.23). Clearly
x* is a steady state if it satisfies u(x) = v(x) and y* is this common value at x = x*.
Clearly x*=0 is a solution so there is at least one steady state.

Simple differentiation shows that

u′ (x) =
αx
βx

1 −
(

αx
βx
x
)2 , u′′ (x) =

2x
(

αx
βx

)3

[
1 −

(
αx
βx
x
)2

]2

and

v′ (x) = βy

αy

(
2

ex + e−x

)2

, v′′ (x) = −8βy

αy

ex − e−x

(ex + e−x )3

By assumption αx and αy are positive, however βx and βy do not have definite signs.
So we have to consider three cases.

(a) βx and βy have different signs. The range of the hyperbolic tangent function
is the open interval (−1, 1) which is also the domain of its inverse. Therefore from

the first equation of (17.22) we see that
∣∣∣αx
βx
x
∣∣∣ < 1 implying that the denominator

of u′ (x) is positive. Since βx and βy have different signs, same holds for u′ (x) and
v′ (x). So one of them is strictly increasing and the other is strictly decreasing. Thus,
there is a unique solution x*= y*=0.
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Fig. 17.1 Graphs of u(x) and v(x)

(b) βx and βy are positive. Notice that u (0) = 0, u
(

βx

αx

)
= ∞with left hand side

limit, u
(
− βx

αx

)
= −∞ with right hand side limit, and

u′ (x) > 0, u′′ (x)
{

> 0 if x > 0
< 0 if x < 0

.

Similarly v (0) = 0, v (∞) = βy

αy
, v (−∞) = − βy

αy
,

v′ (x) > 0, v′′ (x)
{

< 0 if x > 0
> 0 if x < 0

.

In addition u′ (0) = αx
βx

and v′ (0) = βy

αy
. Figure17.1 shows how the shapes of u(x)

and v(x) look like. Both u(x) and v(x) are strictly increasing, u(x) is convex for
x > 0 and concave for x < 0, while v(x) is concave for x > 0 and convex for x < 0.
Therefore x =0 is the only solution if u′ (0) ≥ v′ (0) or αxαy ≥ βxβy , otherwise in
addition to x =0, there is a positive and a negative solution.

(c) βx and βy are negative. This case is identical with case (b) when βx and βy

are replaced with −βx and −βy .
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The asymptotic behaviour of the steady states is examined by linearization. Let

dx = d

dx
tanh (x)

∣∣∣∣ x = x∗ and dy = d

dy
tanh (y)

∣∣∣∣ y = y∗
(
dx , dy > 0

)

where (x*, y*) is a steady state.
Then the linearized equations can be written as

ẋ (t) = −αx x (t) + βxdy y (t)
ẏ (t) = βydx x (t) − αy y (t)

(17.24)

Notice that at the zero steady state dx = dy = 1 and dx , dy < 1 at the nonzero steady
states. In analyzing asymptotical behaviourwefind the Jacobian of the system (17.24)
and obtain the characteristic equation:

det (J − λI ) = det

(−αx − λ βxdy
βydx −αy − λ

)

= λ2 + (
αx + αy

)
λ + (

αxαy − βxβydxdy
) = 0

(17.25)

Since the linear coefficient is positive, we need to check the sign of the costant term.
At the zero steady state dx = dy = 1, so the constant term is αxαy − βxβy . For the
nonzero steady states it can be proven that αxαy > βxβydxdy(seeMatsumoto, 2017).
Thus we have the following result:

Theorem 17.2 (a) The zero steady state is locally asymptotically stable if αxαy >

βxβy , and unstable if αxαy < βxβy . (b) The nonzero steady states are always locally
asymptotically stable.

17.4 Control in Oligopolies

In this section the possibility of government control of oligopolies will be examined.
For the sake of simplicity only N -firm single-product oligopolies will be considered
without product differentiation. Let xk denote the output of firm k(1 � k � N ), then
s = ∑N

k=1 xk is the industry output. Assume that the price function and all cost
functions are linear, p(s) = a − bs and Ck(xk) = ckxk + dk for all k. The profit of
firm k without governmental control is the difference of its revenue and cost,

φk = xk(a − bs) − (ckxk + dk).

Assume that the market is controlled with the cost functions of the firms, for
example, by tax rates, subsidies, etc. So the profit of firm k with control variable
u > 0 can be given as
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φk = xk
(
a − bxk − b

∑
l �=k

xl
)

− u(ckxk + dk) (17.26)

where we assume that the same control applies to all firms. Consider first the case of
discrete time scales and static expectations. The best response of firm k is obtained
by differentiation. Assuming interior maximum,

a − 2bxk − b
∑
l �=k

xl − cku = 0

implying that

xk = −1

2

∑
l �=k

xl + a − cku

2b
.

The dynamic process with static expectation is therefore

xk(t + 1) = −1

2

∑
l �=k

xl(t) + a − cku(t)

2b
. (17.27)

By introducing the new variable

zk(t) = xk(t) − a

(N + 1)b
,

this system can be simplified:

zk(t + 1) = −1

2

∑
l �=k

zl(t) − ck
2b

u(t). (17.28)

This is a discrete system of the form (H9), where

x(t) =

⎛
⎜⎜⎝
z1(t)
z2(t)
. . .

zN (t)

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

0 − 1
2 . . . − 1

2− 1
2 0 . . . − 1

2
. . . . . . . . . . . .

− 1
2 − 1

2 . . . 0

⎞
⎟⎟⎠ , and B =

⎛
⎜⎜⎝

− c1
2b− c2
2b

. . .

− cN
2b

⎞
⎟⎟⎠ .

Consider first the case of duopoly, when N = 2. The Kalman matrix (H11) has
now the form

K = (B, AB) =
(− c1

2b
c2
4b− c2

2b
c1
4b

)
.
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System (17.28) with N = 2 is controllable if rank (K ) = 2, which is the case if
determinant of K is nonzero:

− c21
8b2

+ c22
8b2

�= 0

that is, if c1 �= c2.
Assume next that N � 3. Observe first that A = 1

2 (I − 1), where I is the N × N
identify matrix and all elements of 1 are equal to unity. Notice that 12 = N1 and so

A2 = 1

4

(
I − 21 + 12

) = 1

4

(
I + (N − 2)1

) = N − 1

4
I + 2 − N

2
A

implying that

A2B = N − 1

4
B + 2 − N

2
AB.

That is, the columns of K = (B, AB, . . . , AN−1B) are linearly dependent, so the
system is not controllable.

If continuous time scales are assumed, then the difference equation (17.27) is
replaced by the differential equation

ẋk(t) = Kk

(
− 1

2

∑
l �=k

xl(t) + a − cku(t)

2b
− xk(t)

)
(17.29)

where Kk > 0 is the speed of adjustment of firm k. This can be rewritten as system
(H10) with

A =

⎛
⎜⎜⎝
K1

K2

. . .

KN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

−1 − 1
2 . . . − 1

2− 1
2 −1 . . . − 1

2
. . . . . . . . . . . .

− 1
2 − 1

2 . . . −1

⎞
⎟⎟⎠ ,

B =

⎛
⎜⎜⎝
K1

K2

. . .

KN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

− c1
2b− c2
2b

. . .

− cN
2b

⎞
⎟⎟⎠

and state variables zk(t) as in the discrete case. In the duopoly case

A =
(
K1

K2

) (−1 − 1
2− 1

2 −1

)
=

(−K1 − K1
2− K2

2 −K2

)

and so
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AB =
(−K1 − K1

2− K2
2 −K2

) (− c1K1
2b− c2K2
2b

)
=

(
c1K 2

1
2b + K1K2c2

4b
c1K1K2

4b + c2K 2
2

2b

)
.

Therefore the Kalman matrix has the form

K =
(

− c1K1
2b

2c1K 2
1+K1K2c2
4b

− c2K2
2b

K1K2c1+2c2K 2
2

4b

)
.

The system is controllable if its determinant is nonzero:

0 �= −c1K1(K1K2c1 + 2c2K 2
2 ) + c2K2(2c1K 2

1 + K1K2c2)

8b2

= −K1K2

8b2

[
K1c

2
1 + 2(K2 − K1)c1c2 − K2c

2
2

]

which is the case if

c1
c2

�= K1 − K2 + √
(K2 − K1)2 + K1K2

K1
. (17.30)

In the special case of K1 = K2, this relation is simplified to c1 �= c2. If N � 3,
the controllability conditions are much more complicated, so we consider here only
the special case when K1 = K2 = · · · = KN ≡ K . Matrix A has the special form:

A = −K

2

(
I + 1

)

and therefore

A2 = K 2

4

(
I + 21 + N1

) = −K 2(N + 1)

4
I − K (N + 2)

2
A

since 1 = −I − 2
K A. Therefore the columns of the Kalman matrix

(B, AB, . . . , AN−1B) are linearly dependent implying that the system is not
controllable.

Okuguchi and Szidarovszky (1999) offer more details of this model and other
applications.

17.5 Effect of Information Lag in Oligopoly

Consider an N -firm single product oligopoly without product differentiation with
linear price and cost functions. Let xk denote the output of firm k, then s = ∑N

k=1 xk
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is the industry output. Assume that the price function is p(s) = a − bs and the cost
function of firm k is ck(xk) = ckxk + dk . The profit of firm k is given as

φk = xk(a − bxk − bsk) − (ckxk + dk) (17.31)

where sk is the output of the rest of the industry, sk = ∑
l �=k xl . Assuming interior

best responses of the firms, they can be obtained by simple differentiation

a − 2bxk − bsk − ck = 0

implying that

xk = − sk
2

+ a − ck
2b

. (17.32)

In many situations the output data of the competitors are not available, however
the firms are able to determine the industry output from price information, since from
the linear form of the price function,

s = a − p

b
. (17.33)

Assume that at each time period only delayed price information is available to the
firms, where the length of the delay is either unknown to them or they simply believe
that the price information is instantaneous. So at time period t from the delayed price
information firm k believes that the industry output currently is s(t − θ), where θ is
the delay, so believes that

sk(t) = s(t − θ) − xk(t),

and based on this belief its believed best response is

− s(t − θ) − xk(t)

2
+ a − ck

2b
.

Assuming continuous time scales and output adjustments toward best responses,
the dynamic evolution of the oligopoly is described by the following system of
differential-difference equations;

ẋk(t) = Kk

(
−

∑N
l=1 xl(t − θ) − xk(t)

2
+ a − ck

2b
− xk(t)

)
(17.34)

where Kk is the speed of adjustment of firm k.
For the sake ofmathematical simplicity assume symmetric firms: Kk ≡ K , ck ≡ c

and identical initial output levels. Then the entire trajectories of the firms are also
the same. Let x(t) denote this common trajectory, then (17.34) is reduced to a one-
dimensional system:
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ẋ(t) = K
( − Nx(t − θ)

2
− x(t)

2
+ a − c

2b

)
.

The eigenvalues of the system can be determined by substituting the exponential
form, x(t) = eλt u, into the corresponding homogeneous equation:

λeλt u = K
( − Neλ(t−θ)u

2
− eλt u

2

)

resulting in the characteristic equation

λ + K N

2
e−λθ + K

2
= 0. (17.35)

Without delay (θ = 0) the only eigenvalue is λ = − K (N+1)
2 < 0 implying the

asymptotical stability of the system. If the value of θ increases, then stability maybe
lost. At the stability switches λ must have zero real part, λ = iw. We can assume
that w > 0, since the conjugate of any eigenvalue is also an eigenvalue. Substituting
λ = iw into (17.35) we have

iw + K N

2

(
cos θw − i sin θw

) + K

2
= 0.

Separating the real and imaginary parts two equations are obtained for two
unknowns, w and θ , as follows:

K N

2
cos θw + K

2
= 0 (17.36)

w − K N

2
sin θw = 0. (17.37)

Since sin2 θw + cos2 θw = 1, from these equations we have

K 2

4
+ w2 = K 2N 2

4

so

w2 = K 2(N 2 − 1)

4

and

w = K
√
N 2 − 1

2
. (17.38)
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From (17.36) we know that cos θw < 0, so from (17.37) we see that

θn = 1

w

(
π − sin−1 2w

K N
+ 2nπ

)

= 2

K
√
N 2 − 1

(
π − sin−1

√
N 2 − 1

N
+ 2nπ

)
(n = 0, 1, 2, . . .).

The direction of the stability switch can be determined by assuming that the
eigenvalue is a function of θ and with increasing values of θ at the stability switches
stability is lost if Reλ̇(θ) > 0 and stability might be regained if Reλ̇(θ) < 0. Substi-
tuting λ = λ(θ) into the characteristic equation (17.35) and implicitly differentiating
with respect to θ ,

λ̇ + K N

2
e−λθ (−λ̇θ − λ) = 0

implying that

λ̇ =
K N
2 λe−λθ

1 − K N
2 θe−λθ

= λ(−λ − K
2 )

1 − θ(−λ − K
2 )

= −λ2 − λ K
2

λθ + (1 + θK
2 )

.

With λ = iw,

λ̇ = w2 − iw K
2

iwθ + (1 + θK
2 )

= (w2 − iw K
2 )(1 + θ K

2 − iwθ)

w2θ2 + (1 + θK
2 )2

and so

Reλ̇ = w2(1 + θK
2 ) − w K

2 wθ

w2θ2 + (1 + θK
2 )2

= w2

w2θ2 + (1 + θK
2 )2

> 0.

This relation implies that at all critical values θn at least one pair of eigenvalues
changes the sign of their real parts from negative to positive, that is, stability is lost
at the smallest stability switch:

θ = θ0 = 2

K
√
N 2 − 1

(
π − sin−1

√
N 2 − 1

N

)
,

and the stability cannot be regained with further increase of the value of θ .
The interested reader can find further details of systems with one or two delays

in Matsumoto and Szidarovszky (2012, 2013) or in any book on delay differential
equations such as Bellman and Cooke (1963).



Appendix A
Vector and Matrix Norms

The lengths of n-element vectors can be characterized by the introduction of their
norms. A vector-variable, real valued function x �→ ||x || is called a norm of vector
x , if it satisfies the following properties:

(a) ||x || � 0 and ||x || = 0 if and only if x is the zero vector;
(b) ||αx || = |α| · ||x || for all vectors x and real numbers α;
(c) ||x + y|| � ||x || + ||y|| for all vectors x and y.

The last property is known as the triangle inequality.
The most frequently used vector norms are given as follows:

||x ||1 =
n∑

i=1

|xi |,

where the i th element of vector x is xi ;

||x ||2 =
√√√√

n∑

i=1

x2i

which is called the Euclidean norm; and

||x ||∞ = max
i

|xi |

which is called the maximum norm.
The topology of n-element vector spaces can be easily developed based on vector

norms. The distance of vectors x and y is the norm of their difference, ||x − y||.
A sequence of vectors xk converges to a vector x

∗ if with some vector norm

||xk − x∗|| → 0
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as k → ∞. This definition does not depend on the choice of a particular norm, since
the norms of n-element vectors are equivalent to each other, that is, if || · ||a and
|| · ||b are two vector norms then there are positive constants K1 and K2 such that for
all n-element vectors x ,

K1||x ||a � ||x ||b � K2||x ||a .

Similarly to the usual notation R of the set of real numbers, we use the notation
R

n for the set of all n-element real vectors. An open ball with center x ∈ R
n and

radius r is defined as

B(x, r) = {
y|y ∈ R

n, ||x − y|| < r
}
,

and the corresponding closed ball is given similarly as

B(x, r) = {
y|y ∈ R

n, ||x − y|| � r
}
.

Let D ⊆ R
n be any set of n-element vectors. A point x ∈ D is called interior, if

there is an r > 0 such that
B(x; r) ⊆ D

that is, set D contains point x and an open ball centered at x . A point x ∈ R
n is a

boundary point of D if every ball B(x, r ) with r > 0 contains infinitely many points
of D and also infinitely many points which do not belong to D. Set D is called open if
its every point is interior. Set D is called closed if it contains its all boundary points.
Clearly the complement of an open set is closed, and the complement of a closed set
is open.

A set D ⊆ R
n is called bounded, if there is a constant K such that ||x || � K for

all x ∈ D. Since the norms are equivalent, this definition does not depend on the
norm selection. The closed and bounded subsets of Rn are called compact.

An important property of finite dimensional vector spaces is the following, which
is known as the Bolzano-Weierstrass theorem:

Let {xk} be a bounded infinite sequence of n-element vectors. Then it has a con-
vergent subsequence. In one-dimension for sequences of real numbers this statement
can be proved easily. Its n-dimensional extension can be shown by selecting a subse-
quence where the first component is convergent. Then taking a subsequence of this
where the second component converges, then do the same with the third component,
and so on. This very important property of finite dimensional vector spaces is the
basis for proving many other results.

Assume next that D is compact in R
n and let f : D �→ R be a vector-variable,

real-valued continuous function. Then there is a point x∗ ∈ D such that

f (x∗) = max
{
f (x)|x ∈ D

}
.



Appendix A: Vector and Matrix Norms 267

In other words, a continuous function on a compact set D reaches its maximal
value on D. Since - f is also continuous, function f also reaches its minimal value
on D. This property is known as the Weierstrass theorem.

Assume again that D is compact in R
n , and a vector x ∈ R

n does not belong to
D. Then there is a point y ∈ D such that

||x − y|| = min
{||x − z|| | z ∈ D

}
,

that is, there is a point y ∈ D with minimum distance from x .
In examining the structure of vector spaces linear mappings x �→ Ax are often

examined where x ∈ R
n , and A is an nth order square matrix.We are often interested

in how large the image of a given vector can be. For this reason we introduce matrix
norms in the following way. Let || · || be a given vector norm inRn , and compute the
quantity

max
{||Ax || | ||x || = 1

}

which shows the largest norm of the images of the points from the unit ball with
respect to the selected vector norm.

This quantity is considered as the norm of matrix A, ||A||, generated from (or
associated to) the vector norm || · ||. It can be shown that any such matrix norm
satisfies the following properties;

(a) ||A|| � 0 and ||A|| = 0 if and only if A = 0;
(b) ||αA|| = |α| · ||A|| for all n × n matrices and real numbers α;
(c) ||A + B|| � ||A|| + ||B|| for all n × n matrices A and B;
(d) ||AB|| � ||A|| · ||B|| for all n × n matrices A and B;
(e) ||Ax || � ||A|| · ||x || for all n × n matrices A and n-element vectors x , where

the matrix norm is generated from the vector norm being in both sides of the
inequality.

Let ai j denote the (i, j) element of matrix A, then the matrix norms generated by
vector norms || · ||1, || · ||2 and || · ||∞ are as follows:

||A||1 = max
n∑

i=1

|ai j | (column norm)

||A||2 = max
√

λAT A (Euclidean norm)

where λAT A denotes the eigenvalues ofmatrix AT A. Notice that thismatrix is positive
semidefinite with nonnegative eigenvalues. Furthermore

||A||∞ = max
n∑

j=1

|ai j | (row norm).
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In addition to these matrix norms, the Frobenius matrix norm has certain impor-
tance in applications:

||A||F =
√√√√

n∑

i=1

n∑

j=1

a2i j .

It is easy to show that it satisfies properties a) - d) of matrix norms and satisfies
property e) with the vector norm ||. ||2, that is, for all n × nmatrices A and n-element
vectors x ,

||Ax ||2 � ||A||F · ||x ||2.

We mention here, that the Frobenius norm cannot be generated from any vector
norm, since ||I ||F = √

n and with any matrix norm generated from a vector norm,

||I || = max
{||I x || | ||x || = 1

} = 1.

Let A be an n × n real matrix and λ one of its eigenvalues. Then |λ| � ||A ||with
any matrix norm. In examining the stability of discrete dynamic systems the order
of magnitude of the eigenvalues plays an important role. Matrix norms can provide
a simple bound. More details and proofs of the facts discussed above can be found
for example in Szidarovszky and Molnàr (2002).



Appendix B
Convexity, Concavity

Let D ⊆ R
n be an arbitrary set. We say that D is convex, if for all x, y ∈ D and

0 � α � 1, the point αx + (1 − α)y also belongs to D. That is, with any two points a
convex set also contains the linear segment between the two points. Clearly, any inter-
section of convex sets is also convex, but the union of convex sets is not necessarily
convex.Assume next that D ⊆ R

n is a convex set. A real-valued function f : D �→ R

defined on D is called convex, if for all x, y ∈ D and 0 � α � 1 (Fig.B.1),

f
(
αx + (1 − α)y

)
� α f (x) + (1 − α) f (y). (B.1)

Function f : D �→ Rwith D being a convex set is called strictly convex, if for all
x, y ∈ D, x 	= y and 0 < α < 1,

f
(
αx + (1 − α)y

)
< α f (x) + (1 − α) f (y). (B.2)

A function is called (strictly) concave if – f is (strictly) convex, that is in (B.1)
or (B.2) the opposite inequality direction holds. Assume next, that f : D �→ R is
convex and differentiable. Then from (B.1),

f
(
y + α(x − y)

) − f (y)

α
� f (x) − f (y)

and if α → 0, then the left hand side converges to the derivative of f
(
y + α(x − y)

)

with respect to α, therefore


 f (y)(x − y) � f (x) − f (y) (B.3)

and by interchanging x and y,


 f (x)(y − x) � f (y) − f (x) (B.4)
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Fig. B.1 Convex function

where 
 f is the gradient vector of f the component of which are the partial deriva-
tives of f with respect to its variables. Note, that for concave functions (B.3) and
(B.4) hold with opposite inequality directions.

In minimizing convex functions an important fact is the following. Let D ⊆ R
n be

a closed convex set and function f : D �→ R a continuous convex function. Define
the minimum set of f as follows:

fmin = {
x |x ∈ D, f (x) � f (y) for all y ∈ D

)
,

then fmin is either empty or a closed, convex set.
The uniqueness of minimizer is not true in general, it is sufficient to consider a

constant function which is convex and concave.
However, if f is strictly convex (concave) then fmin ( fmax ) is either empty or

has only one point. That is, the minimizer (maximizer) of strictly convex (concave)
functions cannot be multiple.

The convexity and concavity of single variable real valued functions can be ver-
ified by checking the monotonicity of its derivative. Assume that f is convex and
differentiable on a finite or infinite interval.

Since 
 f = f ′, if x < y then relations (B.3) and (B.4) imply that

f ′(y) � f (x) − f (y)

x − y
� f ′(x), (B.5)

so f ′ is an increasing function. If f ′′ exists, then it implies that f ′′(x) � 0 for all x
from the interior of the interval. This condition is also sufficient for the convexity of
function f .

If f ′′(x) > 0 for all x from the interior of the interval, then f is strictly convex. If
f is concave, then (B.5) holds with opposite inequality directions, so f ′ is decreasing
and f ′′(x) � 0 for all x . If f ′′(x) < 0 for all x , then function f is strictly concave.

In the case of vector variable functions the Hessian matrix is used, which is an
n × n matrix, when n is the number of variables of the function. Its (i, j) element is
the second order partial derivative
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∂2 f

∂xi∂x j

and so the Hessian matrix, usually denoted by H(x), is symmetric with real eigen-
values. Function f defined on a convex set is convex if and only if H(x) is positive
semidefinite for all x , and if it is positive definite, then f is strictly convex. Simi-
larly, if f is concave, then H(x) is negative semidefinite for all x , and if it is negative
definite, then f is strictly concave.

In order to check if H(x) is definite or semidefinite, its eigenvalues are usually
determined. For positive (negative) semidefinite matrices the eigenvalues are non-
negative (nonpositive) and for positive (negative) definite matrices the eigenvalues
are all positive (negative). If there are positive and negative eigenvalues than the
function is neither convex nor concave.

A comprehensive summary of the properties of convex sets and functions can be
found for example in Nikaido (1968).



Appendix C
Optimum Conditions

Consider first a differentiable real-valued function f defined on a finite or infinite
interval. If it has its minimum or maximum in an interior point, then the derivative
of f equals zero at the optimum point. However if the interval is bounded, then the
optimum might occur either in an interior point or at an endpoint of the interval. So
we have to find all stationary points and compare the function values at the endpoints
and all stationary points and select the largest or smallest value(s). If a function f is
differentiable and concave in a closed interval [a, b], then x = a gives maximum if
f ′(a) � 0, value x = b gives maximum if f ′(b) � 0. If f ′(a) > 0 and f ′(b) < 0,
then the optimum is interior, where f ′(x) = 0. If f is a multivariable differentiable
function defined on a set D ⊆ R

n and has its maximum or minimum in an interior
point of D, then all first order partial derivatives of f are equal to zero. That is, the
gradient vector is zero at the optimum. If optimum occurs in the boundary of D, then
the situation is much more complicated than in the one-dimensional case. We need
to find equations describing the points on the boundary and add these equations as
constraints to the optimization problem to get the optimum at the boundary.

Consider now a constrained optimum problem

maximize f (x)

subject to g(x) = 0 (C.1)

where f and g are continuously differentiable. This problem can be reduced to an
unconstrained optimum problem by introducing the Lagrange multipliers as a vector
u with the same dimension as g, and considering the unconstrained problem

maximize f (x) + uT g(x). (C.2)

If x∗ is an optimal solution of (C.1), then there is an u∗ such that (x∗, u∗) is a
stationary point of (C.2). We note here, that not all stationary points of (C.2) give
optimal solution of (C.1), so the Lagrange - multipliers are only necessary and not
always sufficient conditions.
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In the cases of inequality constraints the Kuhn-Tucker conditions give necessary
optimum conditions. Consider therefore the optimum problem

maximize f (x)

subject to g(x) � 0. (C.3)

It can be rewritten as

maximize f (x)

subject to gi (x) − v2
i = 0(i = 1, 2, . . . ,m)

where g has m components, and gi is its i th component.
By applying Lagrange multipliers to this problem after a lengthy derivation the

following conditions can be obtained: If x∗ is an optimal solution of (C.3), then there
exists an u∗ ∈ R

m such that

u∗ � 0 (C.4)

g(x∗) � 0 (C.5)


 f (x∗) + u∗T 
 g(x∗) = 0T (C.6)

u∗T g(x∗) = 0. (C.7)

The meanings of these conditions can be explained as follows. The nonnegativity
of the Kuhn-Tucker multipliers is required, and (C.5) shows that the original con-
straints of problem (C.3) have to be satisfied. In (C.6),
 f is the gradient vector of f
as a row vector, 
g(x∗) is the Jacobian matrix of g, and 0T is a zero row vector with
the same dimension as x . Condition (C.6) shows that the gradient of the objective
function f is a linear combination of the gradients of the constraints gi . The last
condition is known as the complementarity condition, which can be rewritten as

u∗
i gi (x

∗) = 0, i = 1, 2, . . . ,m,

since all components of u∗ and g(x∗) are nonnegative, and the sum of nonnegative
numbers is zero if and only if all terms are equal to zero.

The Kuhn-Tucker conditions are only necessary similarly to the Lagrange multi-
pliers. One can easily derive the Lagrange multiplier method from the Kuhn-Tucker
conditions by rewriting the equality constraint g(x) = 0 as two inequalities

g(x) � 0

−g(x) � 0

and applying the Kuhn-Tucker conditions.
The interested reader can find more details in any reference on nonlinear opti-

mization, for example in Forgó (1988) or in Bazara et al. (2006).



Appendix D
Fixed Point Theorems

Let D be an arbitrary set and f : D �→ D a single-valued mapping defined on D
mapping D into itself. A point x ∈ D is called a fixed point of f , if x = f (x). Clearly
we need special conditions on both set D and mapping f in order to guarantee the
existence and maybe even the uniqueness of fixed points. One of the most often
applied fixed point result is the well known Brouwer fixed point theorem (Brouwer,
1912) :

Let D ⊆ R
n be a nonempty, closed, convex, bounded set and f : D �→ D a con-

tinuous function. Then function f has at least one fixed point on D.
In one dimension it is very easy to prove this result, since D = [a, b] is a closed

bounded interval (Fig.D.1).
If f (a) = a, then a is a fixed point, sowemay assume that f (a) > a. If f (b) = b,

then b is a fixed point, so we may assume that f (b) < b. So at x = a, the curve of f
is above the 45 degree line and at x = b it is under it. So between a and b the curve
must intercept the 45 degree line giving a fixed point.

Instead of trying to show the main ideas of the proof we can easily show that all
conditions of the theorem are really needed by giving examples. In each of them one
condition is violated and all others still hold and the mapping has no fixed point:

(a) D is not convex: D = [−2,−1] ∪ [1, 2], f (x) = −x
(b) D is not closed: D = (0, 1], f (x) = x

2
(c) D is not bounded: D = [0,∞), f (x) = x + 1
(d) f is not continuous: D = [0, 1],

f (x) =
{

x
2 if x 	= 0

1 if x = 0.

The constant mapping shows that the uniqueness of the fixed point is not guaran-
teed in general.

A nice generalization of the Brouwer fixed point theorem was introduced and
proved by Kakutani (1941). Let now D be any set and f : D �→ 2D a point to set
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Fig. D.1 Illustration of Brouwer’s fixed point theorem

mapping defined on D which maps all points of D into subsets of D. A point x ∈ D
is called a fixed point of f if x ∈ f (x). The existence of at least one fixed point is
guaranteed under the following conditions. If D ⊆ R

n is a nonempty, convex, closed,
bounded set, f (x) for all x ∈ D is nonempty, convex, closed set and the graph of
mapping f ,

G f = {
(x, y)|x ∈ D, y ∈ f (x)

}

is closed, then there is at least one x ∈ D such that x ∈ f (x).
Notice that if f is point-to-point (that is, f (x) has only one point), then the

Kakutani fixed point theorem contains Brouwer’s theorem as special case.
If these fixed point theorems are used to prove the existence of Nash equilibrium,

then uniqueness is not guaranteed resulting in the equilibrium selection problem,
which might become a difficult problem to solve.

By relaxing the conditions on set D and by assuming more restrictive conditions
on mapping f not only existence but even the uniqueness of fixed points can be
guaranteed.

In order to formulate Banach’s fixed point theorem we have to introduce the
contraction property. Let D ∈ R

n be a set and f : D �→ D a point-to-point mapping.
It is called a contraction, if there is a constant q ∈ [0, 1) such that for all x, y ∈ D,

|| f (x) − f (y)|| ≤ q · ||x − y||. (D.1)

Notice that this condition depends on the selected norm. So it is often the case
that a mapping is contraction in one norm but not in another. Notice also, that any
contraction mapping is continuous, since if sequence xk → x∗, then

0 � || f (xk) − f (x∗)|| � q||xk − x∗|| → 0 as k → ∞.

The existence and uniqueness result is the following (Banach, 1922):
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Assume D ∈ R
n is a nonempty, closed set and mapping f is a contraction on D.

Then f has exactly one fixed point on D, which can be computed by the following
iteration process:

x0 ∈ D is arbitrary,
xk+1 = f (xk).

Sequence {xk} always converges to the unique fixed point regardless of the initial
point x0.

Notice that example b) after Brouwer’s theorem shows that D has to be closed
and example c) shows that we cannot drop the contraction assumption, since in that
case q = 1.

In comparing the Brouwer and Banach fixed point theorems we can observe the
following: The conditions on set D are more restrictive in Brouwer’s theorem, since
in the case of Banach’s result D does not need to be convex and bounded. However,
Brouwer’s result is less restrictive with mapping f , since contraction implies con-
tinuity but not otherwise. For example, f (x) = x2 on set D = [0, 2] is continuous
but not a contraction, since

x2 − y2 = (x + y)(x − y)

and x + y can have values larger than unity.
In checking the conditions of the Brouwer fixed point theorem we need to verify

the continuity of mapping f in addition to simple properties of set D. However to
verify the contraction property of mapping f needs further elaboration.

If f : D �→ R is a differentiable real function defined on an interval D, then it is
contraction if there is a scalar q ∈ [0, 1) such that | f ′(x)| � q for all x ∈ D. This
observation follows immediately from the fact that for all x, y ∈ D,

| f (x) − f (y)| = |
∫ y

x
f ′(z)dz| � |

∫ y

x
| f ′(z)|dz| � |

∫ y

x
qdz| = q · |x − y|.

If f : D �→ R
n is a differentiable vector valued function defined on a convex set

D ∈ R
n , then f is contraction in a vector norm, if with the associated matrix norm

and q ∈ [0, 1),
|| 
 f (z)|| ≤ q for all z ∈ D

where 
 f is the Jacobian matrix of f with (i, j) element ∂ fi
∂z j

.
This fact is a simple consequence of the relation

|| f (x) − f (y)|| = ||
∫ 1

0

 f

(
y + t (x − y)

)
(x − y)dt ||

�
∫ 1

0
|| 
 f

(
y + t (x − y)

)|| · ||x − y||dt �
∫ 1

0
q · ||x − y||dt = q · ||x − y||.
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The above conditions require that f ′(z) has to be small in the single-dimensional
case and all partial derivatives of all components of f have to be sufficiently small
if f is vector-valued. We mention here as well, that function f can be contraction in
one norm and not in another as the following examples show: Consider Jacobians

A1 =
(
0.8 0.8
0 0

)
, A2 =

(
0.8 0
0.8 0

)
and A3 =

(
0.51 0.51
0.51 0

)

then

||A1||1 = 0.8 < 1, ||A1||∞ = 1.6 > 1, ||A1||2 = √
1.28 > 1

||A2||1 = 1.6 > 1, ||A2||∞ = 0.8 < 1, ||A2||2 = √
1.28 > 1

||A3||1 = 1.02 > 1, ||A3||∞ = 1.02 > 1, ||A3||2 =
√
3 + √

5

2
� 0.825 < 1.

We mention in addition that a slightly relaxed form of the contraction property
guerantees uniqueness of fixed points but does not guarantee existence. Instead of
(D.1) assume that

|| f (x) − f (y)|| < ||x − y||. (D.2)

Then mapping f cannot have multiple fixed points, since if both x (1) and x (2)

would be fixed points, then we would have

|| f (x (1)
) − f

(
x (2)

)|| = ||x (1) − x (2)||

contradicting to (D.2).



Appendix E
Monotonic Mappings

In the case of single-variable, single-valued functions their monotonic properties are
strongly related to the uniqueness of solutions of equations f (x) = 0 and x = f (x).
It is well known that function f is increasing if x < y implies f (x) ≤ f (y), and is
strictly increasing if x < y implies f (x) < f (y). Similarly, f is decreasing if x < y
implies f (x) ≥ f (y) and is strictly decreasing if x < y implies f (x) > f (y).

Consider first equation f (x) = 0. If f is either strictly increasing or strictly
decreasing, then this equation cannot have multiple solutions. Otherwise if there
are two solutions x∗ < y∗, then either f (x∗) < f (y∗) or f (x∗) > f (y∗), so it is
impossible that both function values are equal to zero.

In the case of equation x = f (x)we have a similar observation: if f is decreasing,
then the equation cannot have multiple solutions. Otherwise, if x∗ < y∗ are two
different solutions, then

x∗ = f (x∗) � f (y∗) = y∗

giving an obvious contradiction.
The monotonicity of vector valued and vector variable functions can be defined

as the n-dimensional generalization of the single-dimensional concept. One way is
to assume that the function is monotonic in each variable. That is, if f (x1, . . . , xn)
increases if any xi value increases, then f is considered as an increasing function. If
f (x1, . . . , xn) strictly increases in all variables, then f is called strictly increasing.
Decreasing and strictly decreasing functions are defined similarly.

Unfortunately this kind of monotonicity cannot guarantee the uniqueness of the
solutions of equations f (x) = 0 and x = f (x) as the following simple examples
illustrate.

Consider first equations

x1 + x2 = 0 −x1 − x2 = 0

2x1 + 2x2 = 0 and −2x1 − 2x2 = 0
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where the left hand sides are strictly increasing in the first case and strictly decreasing
in the second. However both systems have infinitely many solutions, x2 = arbitrary
and x1 = −x2.

Consider next the fixed point problem

x1 = −x1 − 2x2
x2 = −2x1 − x2

where the right hand sides are strictly decreasing, but there are again infinitely many
solutions: x2 = arbitrary and x1 = −x2.

Another way of defining n-dimensional monotonicity is the following. Let f :
D �→ R

n be a function where D ⊆ R
n .

It is called monotonic, if for all x, y ∈ D,

(x − y)T
(
f (x) − f (y)

)
� 0. (E.1)

This clearly generalizes the concept of increasing single-dimensional functions,
since if x < y, (E.1) can hold if and only if f (x) � f (y).

We say similarly that function f is strictly monotonic, if for all x, y ∈ D and
x 	= y,

(x − y)T
(
f (x) − f (y)

)
> 0. (E.2)

This condition clearly generalizes the concept of strictly increasing real functions,
since if x < y, then (E.2) holds if and only if f (x) < f (y).

Assume now that D is a convex set and f is differentiable. Let J (x) denote the

Jacobian matrix of f , the (i, j) element of which is ∂ fi (x)
∂x j

, where fi denotes the i th
component of f and x j is the j th component of x . The monotonicity of the function
f can be characterized with the definiteness of its Jacobian. The two fundamental
facts are as follows. Function f is monotonic if and only if J (x) + J (x)T is positive
semidefinite for all x ∈ D, and if J (x) + J (x)T is positive definite for all x ∈ D,
then f is strictly monotonic. Notice that in the one-dimensional case J (x) = f ′(x),
which is positive semidefinite as a 1 × 1matrix if f ′(x) � 0, and it is positive definite
if f ′(x) > 0.

So the n-dimensional definiteness conditions reduce to the usual single-
dimensional conditions for n = 1 concerning the derivatives of the functions. This
kind of monotonicity can also be used to guarantee uniqueness of solutions of equa-
tions of the types f (x) = 0 and x = f (x).

Assume first that either f or − f is strictly monotonic. Then equation f (x) = 0
cannot havemultiple solutions. If it does, thenwehave x (1) 	= x (2) such that f (x (1)) =
f (x (2)) = 0 implying that

0 = (x (1) − x (2))T
(
f (x (1)) − f (x (2))

)
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where the right hand side is either positive or negative giving a contradiction. Assume
next that− f is monotonic. Then equation x = f (x) cannot have multiple solutions.
Assume it does, then we have x (1) 	= x (2) such that f (x (1)) = x (1) and f (x (2)) = x (2)

.

Then clearly

0 � (x (1) − x (2))T
(
f (x (1)) − f (x (2))

) = (x (1) − x (2))T (x (1) − x (2)) = ||x (1) − x (2)||22 > 0

giving a contradiction.
A good survey of generalized monotonicity is given in Schaible (1994), it can be

recommended as further reading.



Appendix F
Duality in Linear Programming

Alinear programming (LP) problem is defined as a constrainedoptimizationproblem,
where the unknown is an n-element vector x , the objective function and all constraints
are linear and each constraint is either �,= or � type. The primal form of an LP
problem can be obtained in several steps. If there is no sign restriction on a variable
xi , then it can be represented as xi = x+

i − x−
i , where both new variables x+

i and x−
i

are assumed to be nonnegative.
If a constraint has the form aT

i x � bi , then it can be rewritten as a� type constraint
bymultiplying both sides by (-1) to get : (−aT

i )x � −bi . If a constraint is of equation
type, aT

i x = bi , then it can be replaced by two inequalities:

aT
i x � bi

aT
i x � bi

where we can multiply the first condition by (−1) to get

(−aT
i )x � (−bi )

aT
i x � bi .

After these modifications are done, the LP problemwill have the following primal
form:

maximize cT x

subject to x � 0 (F.1)

Ax � b.

If the original problem minimizes the objective function then by multiplying the
objective function by (−1) transforms it into a maximum problem.
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To each primal form we can introduce its dual form:

minimize bT y

subject to y � 0 (F.2)

AT y � c.

It is clear that the dual of the dual problem (F.2) is the primal problem (F.1).
The relation of the primal and dual of an LP problem can be expressed by the

following duality theorems.
Theweak duality property states that if x and y are feasible solutions of the primal

and dual problems, respectively, then

cT x � bT y. (F.3)

This inequality can be proved easily, since

cT x � (AT y)T x = yT Ax � yT b = bT y.

An important corollary of this theorem is that if the primal has unbounded objec-
tive function, then the dual has no feasible solution. Similar argument can be con-
cluded in an analogous manner for the dual problem. It is also obvious that if both
the primal and the dual problems have feasible solutions, then both objectives are
bounded by (F.3). If in addition x and y are feasible solutions of the primal and

dual problems, respectively, such that cT x = bT y, then both are optimal for their
respective problems.

The strong duality theorem goes one step further asserting that if the primal (dual)
problem has a finite optimal solution, then so does the dual (primal) and the two
optimal objective values are equal. Padberg (1999) offers a comprehensive summary
of duality and related subjects.



Appendix G
Multiobjective Optimization

In a single objective optimization problem

maximize f (x)

subject to x ∈ X, (G.1)

where X is the set of feasible solutions, the values of f (x) when x runs through set
X is a subset of the real line. Therefore any optimal solution satisfies the following
properties:

(a) optimal solution is at least as good as any other solution;
(b) there is no better solution;
(c) all optimal solutions have the same objective function value.

The last property tells us that it does not matter which optimal solution is selected,
since all of them provide the same outcome as the objective function is concerned.

A multiobjective optimization problem is usually formulated as

maximize f (x) = (
f1(x), f2(x), . . . , fn(x)

)

subject to x ∈ X. (G.2)

We do not restrict generality by assuming that all objectives are maximum types,
since in the case of a minimum type objective it can be transformed into maximum
type by multiplying it by (−1). Maximizing each objective function individually
on the feasible set X we can get n optimal solutions, which are usually different,
so there is no optimal solution of problem (G.2) which would satisfy properties
(a), (b) and (c). Instead of looking for a usually non-existing optimal solution, we
relax the above conditions by looking for nondominated solutions. A feasible x is
called weakly nondominated if there is no y ∈ X such that fi (y) > fi (x) for all
i = 1, 2, . . . , n. That is, we cannot improve all objectives simultaneously on the
feasible set. A feasible x is called strongly nondominated if no objective can be
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Fig. G.1 Weakly and strongly nondominated solutions

improved without worthening at least one other objective. That is, there is no y ∈
X such that fi (y) � fi (x) for all i = 1, . . . , n and f (x) 	= f (y). Figure G.1 shows
the difference between weakly and strongly nondominated solutions, where f1 =
x1, f2 = x2. Notice that point A is the only strongly nondominated solution, but
there are infinitely many weakly nondominated solutions: the linear segments BA
and AC . Clearly every strongly nondominated solution is alsoweakly nondominated,
but the weakly nondominated solutions are not necessarily strongly nondominated
(Fig.G.1).

The feasible set X shows the possible decision alternatives giving us all possibil-
ities what we can do. In addition to X , the objective space is usually considered:

F = { f = ( f1, . . . , fn) | there exists x ∈ X such that fi = fi (x), i = 1, 2, . . . , n}.

This set gives all possible simultaneous objective values, that is, it represents
what we can get. Similarly to set X , a vector f ∈ F is weakly nondominated, if

there is no other point f ∈ F such that f > f in all components. A point f ∈ F

is strongly nondominated if there is no other point f 	= f in F such that f � f
in every component. Clearly all weakly or strongly nondominated points of F are
boundary points. In the economic literature nondominated solutions are often called
Pareto optimal.

There is no guarantee in general that a problem (G.2) has nondominated solution,
and even if it has, the solution is not necessarily unique. For example the problem

maximize (x1, x2)

subject to x21 + x22 < 1

has no nondominated solution, and problem

maximize (x1, x2)

subject to x1 + x2 � 1
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has infinitely many nondominated solutions: x2 = arbitrary, x1 = 1 − x2.
The existence of nondominated solutions is guaranteed by the following general

result. Assume F is nonempty, closed and for each i = 1, 2, . . . , n there exists a
value f ∗

i such that fi (x) � f ∗
i for all x ∈ F . Then problem (G.2) has at least one

strongly nondominated solution.
In the case of multiple nondominated solutions the choice of the most appropri-

ate solution needs additional preference information since they are not satisfying
properties (a) and (c) of the optima of single-objective optimum problems. Differ-
ent nondominated solutions usually give different objective function values, and in
order to compare them we need additional preference information about n-element
vectors.

Chapter14 shows some of the most popular methods for solving multiobjective
optimization problems. A comprehensive summary and discussion on the most com-
monly used methods can be found in many textbooks or monographs, for example
in Szidarovszky et al. (1986).



Appendix H
Stability and Controllability

A time-invariant nonlinear system is given by the difference equation

x(t + 1) = g
(
x(t)

)
(H.1)

with discrete time scales and as

ẋ(t) = g
(
x(t)

)
(H.2)

in continuous time scales where g : D �→ R
n with D ⊆ R

n .
It is usually assumed that g is continuous on D and starting from arbitrary initial

value x(0), Eqs. (H.1) and (H.2) have unique trajectories in D. Vector x(t) is called
the state of the system at time t .

The equilibrium or steady state of system (H.1) is an x ∈ D such that x = g(x),
and that of system (H.2) is an x ∈ D such that g(x) = 0. That is, if the state becomes
x at any time, then the state will remain x for all future times. The stability theory of
dynamic systems tries to answer the question that what is the asymptotic behavior
of the state trajectory if x(0) differs from the equilibrium; and under what condition
x(t) approaches the equilibrium in the long run.

The equilibrium x is called locally asymptotically stable, if there is an ε > 0 such
that x(t) → x as t → ∞ if ||x(0) − x || < ε. That is, if the initial state is selected
sufficiently close to the equilibrium, then the state trajectory converges back to the
equilibrium as t → ∞.

An equilibrium x is called globally asymptotically stable if x(t) → x as t → ∞
regardless of the selection of the initial state.

We can call a system asymptotically stable if its equilibrium is asymptotically
stable.

One of the most frequently applied method of checking stability of nonlinear
systems is the local linearization, when the right hand sides of Eqs. (H.1) and (H.2)
are replaced by their linear Taylor polynomials centered at x :
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g(x(t)) ≈ g(x) + J (x)(x(t) − x) (H.3)

where J (x) denotes the Jacobian matrix of g(x) at x = x .
So the linearized version of the Eq. (H.1) has the form

x(t + 1) = x + J (x)(x(t) − x)

and by introducing the notation xδ(t) = x(t) − x , it can be rewritten as

xδ(t + 1) = J (x)xδ(t). (H.4)

The linearized version of Eq. (H.2) can be written as

ẋ(t) = J (x)(x(t) − x),

that is,
ẋδ(t) = J (x)xδ(t) (H.5)

since x is a constant with zero derivative. In both cases the linearized equation
becomes a homogeneous linear equation and the asymptotic stability of x in the
linearized equations is equivalent to the asymptotic stability of the zero equilibrium
of Eqs. (H.4) and (H.5).

It is easy to prove that in the case of linear systems local asymptotic stability
implies global asymptotic stability; however this is not true for nonlinear systems.
However the following fact gives a practical method to check stability of nonlinear
systems. Assume that the homogeneous system (H.4) (or (H.5)) is asymptotically
stable, then the nonlinear system (H.1) (or (H.2)) is locally asymptotically stable. So
the asymptotic stability of the linearized system implies the local asymptotic stability
of the nonlinear system. The reverse of this fact is not true, there are asymptotically
stable nonlinear systems with linearized system which are not asymptotically stable.
Such example in the discrete case is system

x(t + 1) = x(t)e−x(t)2

with the unique equilibrium x = 0, and in the continuous case

ẋ(t) = −x(t)3

with x = 0.
The asymptotical stability of the linear systems (H.4) and (H.5) can be decided

based on the eigenvalues of the Jacobian matrix J (x) as follows. System (H.4) is
asymptotically stable if and only if |λ| < 1 for all eigenvalues of J (x), and system
(H.5) is asymptotically stable if and only if Re λ < 0, that is, the real parts of all
eigenvalues are negative.
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The eigenvalues of an n × n matrix are the roots of the nth degree characteristic
polynomial, so there are n eigenvalues where multiple eigenvalues are counted with
their multiplicities.

In the cases of low degree polynomials the stability conditions can be verified
without solving the polynomial equations. If n = 2, the characteristic polynomial is
quadratic :

λ2 + a1λ + a0 = 0.

Then both roots have negative real parts if and only if both coefficients a0 and a1
are positive. It can be also proved that both roots are inside the unit circle if and only if

a0 < 1

1 + a0 + a1 > 0 (H.6)

1 + a0 − a1 > 0.

If n = 3, then the characteristic polynomial is cubic:

λ3 + a2λ
2 + a1λ + a0 = 0.

All roots have negative real parts if and only if all coefficientsa0, a1, a2 are positive
and

a1 · a2 > a0. (H.7)

In the discrete case, all roots are inside the unit circle if and only if

1 + a2 + a1 + a0 > 0

1 − a2 + a1 − a0 > 0

1 − a1 + a2a0 − a20 > 0 (H.8)

a1 < 3.

A time invariant discrete linear control system can be written as

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 (H.9)

where A is n × n, B is n × m constantmatrix, x(t) is n-element, u(t) is anm-element
vector. Here, as before, x(t) is the state of the system and u(t) is the input, or control
of the system at time t . In the continuous case the system equation has the form:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (H.10)

Let T > 0 be a given future time period, and x∗ a selected given state vector. We
say that system (H.9) or (H.10) is controlable to x∗ at time T if there is an input
function u(t) such that the state of the system becomes x∗ at t = T . This type of
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control is called the final state control, since we do not care about the system for
t > T . We say that a system is completely controllable at time T , if it is controllable
to any final state at time T .

The controllability of systems (H.9) and (H.10) can be easily verified by the
Kalman controllablility conditions. Define the Kalman controllability matrix

K = (B, AB, A2B, . . . , An−1B) (H.11)

which is an n × (mn) constant matrix. Then system (H.9) is completely controllable
at any time T � n, if and only ifmatrix K has full rank, that is, rank(K ) = n. System
(H.10) is completely controllable at any time T > 0 if and only if rank(K ) = n.

Since matrix K has n rows, its rank cannot exceed n, so the maximum possible
rank of matrix K is n.

For more details the interested reader may consult with any textbook on linear
systems, for example with Szidarovszky and Bahill (1992).
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